Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem1 Structured version   Visualization version   GIF version

Theorem setrec2lem1 42440
Description: Lemma for setrec2 42442. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑎,𝑦
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem setrec2lem1
StepHypRef Expression
1 fvres 6207 . 2 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
2 dmres 5419 . . . . . . 7 dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) = ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹)
3 inss1 3833 . . . . . . 7 ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
42, 3eqsstri 3635 . . . . . 6 dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
54sseli 3599 . . . . 5 (𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
65con3i 150 . . . 4 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}))
7 ndmfv 6218 . . . 4 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
86, 7syl 17 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
9 vex 3203 . . . . . . 7 𝑎 ∈ V
10 breq1 4656 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥𝐹𝑦𝑎𝐹𝑦))
1110eubidv 2490 . . . . . . 7 (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦))
129, 11elab 3350 . . . . . 6 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦)
1312notbii 310 . . . . 5 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ¬ ∃!𝑦 𝑎𝐹𝑦)
1413biimpi 206 . . . 4 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ ∃!𝑦 𝑎𝐹𝑦)
15 tz6.12-2 6182 . . . 4 (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹𝑎) = ∅)
1614, 15syl 17 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹𝑎) = ∅)
178, 16eqtr4d 2659 . 2 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
181, 17pm2.61i 176 1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  ∃!weu 2470  {cab 2608  cin 3573  c0 3915   class class class wbr 4653  dom cdm 5114  cres 5116  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-res 5126  df-iota 5851  df-fv 5896
This theorem is referenced by:  setrec2  42442
  Copyright terms: Public domain W3C validator