Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2 Structured version   Visualization version   GIF version

Theorem setrec2 42442
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is a subclass of all classes 𝐶 that are closed under 𝐹. Taken together, theorems setrec1 42438 and setrec2v 42443 uniquely determine setrecs(𝐹) to be the minimal class closed under 𝐹.

We express this by saying that if 𝐹 respects the relation and 𝐶 is closed under 𝐹, then 𝐵𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7053) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021.)

Hypotheses
Ref Expression
setrec2.1 𝑎𝐹
setrec2.2 𝐵 = setrecs(𝐹)
setrec2.3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2 (𝜑𝐵𝐶)
Distinct variable group:   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐹(𝑎)

Proof of Theorem setrec2
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2.1 . . 3 𝑎𝐹
2 nfcv 2764 . . . . . 6 𝑎𝑥
3 nfcv 2764 . . . . . 6 𝑎𝑢
42, 1, 3nfbr 4699 . . . . 5 𝑎 𝑥𝐹𝑢
54nfeu 2486 . . . 4 𝑎∃!𝑢 𝑥𝐹𝑢
65nfab 2769 . . 3 𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}
71, 6nfres 5398 . 2 𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
8 setrec2.2 . . 3 𝐵 = setrecs(𝐹)
9 setrec2lem1 42440 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹𝑤)
109sseq1i 3629 . . . . . . . . . . 11 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹𝑤) ⊆ 𝑧)
1110imbi2i 326 . . . . . . . . . 10 ((𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1211imbi2i 326 . . . . . . . . 9 ((𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1312albii 1747 . . . . . . . 8 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1413imbi1i 339 . . . . . . 7 ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1514albii 1747 . . . . . 6 (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1615abbii 2739 . . . . 5 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716unieqi 4445 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
18 df-setrecs 42431 . . . 4 setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
19 df-setrecs 42431 . . . 4 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2017, 18, 193eqtr4ri 2655 . . 3 setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
218, 20eqtri 2644 . 2 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
22 setrec2lem2 42441 . 2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
23 setrec2.3 . . 3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
24 setrec2lem1 42440 . . . . . 6 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹𝑎)
2524sseq1i 3629 . . . . 5 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹𝑎) ⊆ 𝐶)
2625imbi2i 326 . . . 4 ((𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2726albii 1747 . . 3 (∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2823, 27sylibr 224 . 2 (𝜑 → ∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶))
297, 21, 22, 28setrec2fun 42439 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  ∃!weu 2470  {cab 2608  wnfc 2751  wss 3574   cuni 4436   class class class wbr 4653  cres 5116  cfv 5888  setrecscsetrecs 42430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-setrecs 42431
This theorem is referenced by:  setrec2v  42443
  Copyright terms: Public domain W3C validator