![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shjcom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shjval 28210 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
2 | shjval 28210 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) | |
3 | 2 | ancoms 469 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) |
4 | uncom 3757 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | fveq2i 6194 | . . . 4 ⊢ (⊥‘(𝐵 ∪ 𝐴)) = (⊥‘(𝐴 ∪ 𝐵)) |
6 | 5 | fveq2i 6194 | . . 3 ⊢ (⊥‘(⊥‘(𝐵 ∪ 𝐴))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
7 | 3, 6 | syl6eq 2672 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | 1, 7 | eqtr4d 2659 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 ‘cfv 5888 (class class class)co 6650 Sℋ csh 27785 ⊥cort 27787 ∨ℋ chj 27790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-hilex 27856 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sh 28064 df-chj 28169 |
This theorem is referenced by: shlej2 28220 shjcomi 28230 shub2 28242 chjcom 28365 |
Copyright terms: Public domain | W3C validator |