HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjcom Structured version   Visualization version   Unicode version

Theorem shjcom 28217
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shjcom  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  vH  B
)  =  ( B  vH  A ) )

Proof of Theorem shjcom
StepHypRef Expression
1 shjval 28210 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  vH  B
)  =  ( _|_ `  ( _|_ `  ( A  u.  B )
) ) )
2 shjval 28210 . . . 4  |-  ( ( B  e.  SH  /\  A  e.  SH )  ->  ( B  vH  A
)  =  ( _|_ `  ( _|_ `  ( B  u.  A )
) ) )
32ancoms 469 . . 3  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( B  vH  A
)  =  ( _|_ `  ( _|_ `  ( B  u.  A )
) ) )
4 uncom 3757 . . . . 5  |-  ( B  u.  A )  =  ( A  u.  B
)
54fveq2i 6194 . . . 4  |-  ( _|_ `  ( B  u.  A
) )  =  ( _|_ `  ( A  u.  B ) )
65fveq2i 6194 . . 3  |-  ( _|_ `  ( _|_ `  ( B  u.  A )
) )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) )
73, 6syl6eq 2672 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( B  vH  A
)  =  ( _|_ `  ( _|_ `  ( A  u.  B )
) ) )
81, 7eqtr4d 2659 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  vH  B
)  =  ( B  vH  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   ` cfv 5888  (class class class)co 6650   SHcsh 27785   _|_cort 27787    vH chj 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sh 28064  df-chj 28169
This theorem is referenced by:  shlej2  28220  shjcomi  28230  shub2  28242  chjcom  28365
  Copyright terms: Public domain W3C validator