![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1091 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | adantr 481 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: pythagtriplem4 15524 tsmsxp 21958 brbtwn2 25785 ax5seg 25818 3vfriswmgr 27142 br8 31646 nolt02o 31845 btwndiff 32134 ifscgr 32151 seglecgr12im 32217 lkrshp 34392 cvlcvr1 34626 atbtwn 34732 3dimlem3 34747 3dimlem3OLDN 34748 1cvratex 34759 llnmlplnN 34825 4atlem3 34882 4atlem3a 34883 4atlem11 34895 4atlem12 34898 lnatexN 35065 cdlemb 35080 paddasslem4 35109 paddasslem10 35115 pmodlem1 35132 llnexchb2lem 35154 llnexchb2 35155 arglem1N 35477 cdlemd4 35488 cdlemd9 35493 cdlemd 35494 cdleme16 35572 cdleme20 35612 cdleme21i 35623 cdleme21k 35626 cdleme27N 35657 cdleme28c 35660 cdlemefrs29bpre0 35684 cdlemefrs29clN 35687 cdlemefrs32fva 35688 cdleme41sn3a 35721 cdleme32fva 35725 cdleme40n 35756 cdlemg12e 35935 cdlemg15a 35943 cdlemg15 35944 cdlemg16ALTN 35946 cdlemg16z 35947 cdlemg20 35973 cdlemg22 35975 cdlemg29 35993 cdlemg38 36003 cdlemk33N 36197 cdlemk56 36259 dihord11b 36511 dihord2pre 36514 dihord4 36547 fourierdlem77 40400 |
Copyright terms: Public domain | W3C validator |