Proof of Theorem pythagtriplem4
| Step | Hyp | Ref
| Expression |
| 1 | | simp3r 1090 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴) |
| 2 | | nnz 11399 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 3 | | nnz 11399 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 4 | | zsubcl 11419 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 − 𝐵) ∈ ℤ) |
| 5 | 2, 3, 4 | syl2anr 495 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
| 6 | 5 | 3adant1 1079 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
| 8 | | simp13 1093 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
| 9 | | simp12 1092 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
| 10 | 8, 9 | nnaddcld 11067 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ) |
| 11 | 10 | nnzd 11481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ) |
| 12 | | gcddvds 15225 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
| 13 | 7, 11, 12 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
| 14 | 13 | simprd 479 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)) |
| 15 | | breq1 4656 |
. . . . . . . . 9
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) ↔ 2 ∥ (𝐶 + 𝐵))) |
| 16 | 15 | biimpd 219 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) → 2 ∥ (𝐶 + 𝐵))) |
| 17 | 14, 16 | mpan9 486 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐶 + 𝐵)) |
| 18 | | simpl13 1138 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℕ) |
| 19 | 18 | nnzd 11481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℤ) |
| 20 | | simpl12 1137 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℕ) |
| 21 | 20 | nnzd 11481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℤ) |
| 22 | 19, 21 | zaddcld 11486 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 + 𝐵) ∈ ℤ) |
| 23 | 19, 21 | zsubcld 11487 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 − 𝐵) ∈ ℤ) |
| 24 | | 2z 11409 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 25 | | dvdsmultr1 15019 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ (𝐶 +
𝐵) ∈ ℤ ∧
(𝐶 − 𝐵) ∈ ℤ) → (2
∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
| 26 | 24, 25 | mp3an1 1411 |
. . . . . . . 8
⊢ (((𝐶 + 𝐵) ∈ ℤ ∧ (𝐶 − 𝐵) ∈ ℤ) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
| 27 | 22, 23, 26 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
| 28 | 17, 27 | mpd 15 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 29 | 18 | nncnd 11036 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℂ) |
| 30 | 20 | nncnd 11036 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℂ) |
| 31 | | subsq 12972 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 32 | 29, 30, 31 | syl2anc 693 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 33 | 28, 32 | breqtrrd 4681 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶↑2) − (𝐵↑2))) |
| 34 | | simpl2 1065 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| 35 | 34 | oveq1d 6665 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
| 36 | | simpl11 1136 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℕ) |
| 37 | 36 | nnsqcld 13029 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℕ) |
| 38 | 37 | nncnd 11036 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℂ) |
| 39 | 20 | nnsqcld 13029 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℕ) |
| 40 | 39 | nncnd 11036 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℂ) |
| 41 | 38, 40 | pncand 10393 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
| 42 | 35, 41 | eqtr3d 2658 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
| 43 | 33, 42 | breqtrd 4679 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐴↑2)) |
| 44 | | nnz 11399 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 45 | 44 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 46 | 45 | 3ad2ant1 1082 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
| 47 | 46 | adantr 481 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℤ) |
| 48 | | 2prm 15405 |
. . . . . 6
⊢ 2 ∈
ℙ |
| 49 | | 2nn 11185 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 50 | | prmdvdsexp 15427 |
. . . . . 6
⊢ ((2
∈ ℙ ∧ 𝐴
∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
| 51 | 48, 49, 50 | mp3an13 1415 |
. . . . 5
⊢ (𝐴 ∈ ℤ → (2
∥ (𝐴↑2) ↔ 2
∥ 𝐴)) |
| 52 | 47, 51 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
| 53 | 43, 52 | mpbid 222 |
. . 3
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ 𝐴) |
| 54 | 1, 53 | mtand 691 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) |
| 55 | | neg1z 11413 |
. . . . . . . . 9
⊢ -1 ∈
ℤ |
| 56 | | gcdaddm 15246 |
. . . . . . . . 9
⊢ ((-1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
| 57 | 55, 56 | mp3an1 1411 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
| 58 | 7, 11, 57 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
| 59 | 8 | nncnd 11036 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
| 60 | 9 | nncnd 11036 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
| 61 | | pnncan 10322 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 62 | 61 | 3anidm23 1385 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 63 | | subcl 10280 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
| 64 | 63 | mulm1d 10482 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1
· (𝐶 − 𝐵)) = -(𝐶 − 𝐵)) |
| 65 | 64 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + -(𝐶 − 𝐵))) |
| 66 | | addcl 10018 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
| 67 | 66, 63 | negsubd 10398 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + -(𝐶 − 𝐵)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
| 68 | 65, 67 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
| 69 | | 2times 11145 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 70 | 69 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 71 | 62, 68, 70 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = (2 · 𝐵)) |
| 72 | 71 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 73 | 59, 60, 72 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 74 | 58, 73 | eqtrd 2656 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 75 | 9 | nnzd 11481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ) |
| 76 | | zmulcl 11426 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 · 𝐵) ∈ ℤ) |
| 77 | 24, 75, 76 | sylancr 695 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐵) ∈
ℤ) |
| 78 | | gcddvds 15225 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
| 79 | 7, 77, 78 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
| 80 | 79 | simprd 479 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)) |
| 81 | 74, 80 | eqbrtrd 4675 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵)) |
| 82 | | 1z 11407 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 83 | | gcdaddm 15246 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
| 84 | 82, 83 | mp3an1 1411 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
| 85 | 7, 11, 84 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
| 86 | | ppncan 10323 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 87 | 86 | 3anidm13 1384 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 88 | 63 | mulid2d 10058 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· (𝐶 − 𝐵)) = (𝐶 − 𝐵)) |
| 89 | 88 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + (𝐶 − 𝐵))) |
| 90 | | 2times 11145 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 91 | 90 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 92 | 87, 89, 91 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
| 93 | 59, 60, 92 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
| 94 | 93 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
| 95 | 85, 94 | eqtrd 2656 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
| 96 | 8 | nnzd 11481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ) |
| 97 | | zmulcl 11426 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐶
∈ ℤ) → (2 · 𝐶) ∈ ℤ) |
| 98 | 24, 96, 97 | sylancr 695 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) ∈
ℤ) |
| 99 | | gcddvds 15225 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
| 100 | 7, 98, 99 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
| 101 | 100 | simprd 479 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)) |
| 102 | 95, 101 | eqbrtrd 4675 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) |
| 103 | | nnaddcl 11042 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ) |
| 104 | 103 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 105 | 104 | ancoms 469 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 106 | 105 | 3adant1 1079 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 107 | 106 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ≠ 0) |
| 108 | 107 | neneqd 2799 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ (𝐶 + 𝐵) = 0) |
| 109 | 108 | intnand 962 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) |
| 110 | | gcdn0cl 15224 |
. . . . . . . 8
⊢ ((((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) ∧ ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
| 111 | 7, 11, 109, 110 | syl21anc 1325 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
| 112 | 111 | nnzd 11481 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ) |
| 113 | | dvdsgcd 15261 |
. . . . . 6
⊢ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ (2
· 𝐶) ∈ ℤ)
→ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
| 114 | 112, 77, 98, 113 | syl3anc 1326 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
| 115 | 81, 102, 114 | mp2and 715 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))) |
| 116 | | 2nn0 11309 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
| 117 | | mulgcd 15265 |
. . . . . . 7
⊢ ((2
∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
| 118 | 116, 117 | mp3an1 1411 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2
· 𝐵) gcd (2 ·
𝐶)) = (2 · (𝐵 gcd 𝐶))) |
| 119 | 75, 96, 118 | syl2anc 693 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
| 120 | | pythagtriplem3 15523 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |
| 121 | 120 | oveq2d 6666 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = (2 · 1)) |
| 122 | | 2t1e2 11176 |
. . . . . 6
⊢ (2
· 1) = 2 |
| 123 | 121, 122 | syl6eq 2672 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = 2) |
| 124 | 119, 123 | eqtrd 2656 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = 2) |
| 125 | 115, 124 | breqtrd 4679 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2) |
| 126 | | dvdsprime 15400 |
. . . 4
⊢ ((2
∈ ℙ ∧ ((𝐶
− 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
| 127 | 48, 111, 126 | sylancr 695 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
| 128 | 125, 127 | mpbid 222 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
| 129 | | orel1 397 |
. 2
⊢ (¬
((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
| 130 | 54, 128, 129 | sylc 65 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) |