Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40n Structured version   Visualization version   GIF version

Theorem cdleme40n 35756
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40a1.y 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme40a1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
cdleme40.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40.f 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
cdleme40a1.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, < )
cdleme40a1.z 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
Assertion
Ref Expression
cdleme40n ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑆 / 𝑢𝑉)
Distinct variable groups:   𝑣,𝑢,𝑧,𝐴   𝑢,𝐵,𝑣,𝑧   𝑧,𝐹   𝑣,𝐻,𝑧   𝑢, ,𝑣,𝑧   𝑣,𝐾,𝑧   𝑢, ,𝑣,𝑧   𝑢, ,𝑣,𝑧   𝑢,𝑃,𝑣,𝑧   𝑢,𝑄,𝑣,𝑧   𝑣,𝑅,𝑧   𝑢,𝑆,𝑧   𝑢,𝑇   𝑣,𝑈,𝑧   𝑢,𝑊,𝑣,𝑧   𝑣,𝑠,𝑡,𝑦,𝐴   𝐵,𝑠,𝑡,𝑦   𝐸,𝑠   𝑡,𝐹   𝑡,𝐻,𝑦   ,𝑠,𝑡,𝑦   𝑡,𝐾,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝑡,𝑆,𝑣,𝑦   𝑇,𝑠,𝑡,𝑦   𝑣,𝐷   𝑣,𝐼   𝑣,𝑁
Allowed substitution hints:   𝐶(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐷(𝑦,𝑧,𝑢,𝑡,𝑠)   𝑅(𝑢)   𝑆(𝑠)   < (𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑧,𝑣,𝑢,𝑡)   𝐹(𝑦,𝑣,𝑢,𝑠)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑢,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑋(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)   𝑍(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40n
StepHypRef Expression
1 cdleme40.b . . . 4 𝐵 = (Base‘𝐾)
2 fvex 6201 . . . 4 (Base‘𝐾) ∈ V
31, 2eqeltri 2697 . . 3 𝐵 ∈ V
4 nfv 1843 . . . 4 𝑣(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆))
5 nfcv 2764 . . . . . 6 𝑣𝑅 / 𝑠𝑁
6 cdleme40a1.z . . . . . . 7 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
7 nfra1 2941 . . . . . . . 8 𝑣𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹)
8 nfcv 2764 . . . . . . . 8 𝑣𝐵
97, 8nfriota 6620 . . . . . . 7 𝑣(𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
106, 9nfcxfr 2762 . . . . . 6 𝑣𝑍
115, 10nfne 2894 . . . . 5 𝑣𝑅 / 𝑠𝑁𝑍
1211a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → Ⅎ𝑣𝑅 / 𝑠𝑁𝑍)
136a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹)))
14 neeq2 2857 . . . . 5 (𝐹 = 𝑍 → (𝑅 / 𝑠𝑁𝐹𝑅 / 𝑠𝑁𝑍))
1514adantl 482 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ 𝐹 = 𝑍) → (𝑅 / 𝑠𝑁𝐹𝑅 / 𝑠𝑁𝑍))
16 simpl11 1136 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpl12 1137 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18 simpl13 1138 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
19 simpl21 1139 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑃𝑄)
20 simpl22 1140 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
21 simpl23 1141 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
22 simpl3 1066 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆))
23 simprl 794 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑣𝐴)
24 simprrl 804 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 𝑊)
25 simprrr 805 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 (𝑃 𝑄))
2623, 24, 253jca 1242 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
27 cdleme40.l . . . . . . 7 = (le‘𝐾)
28 cdleme40.j . . . . . . 7 = (join‘𝐾)
29 cdleme40.m . . . . . . 7 = (meet‘𝐾)
30 cdleme40.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
31 cdleme40.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
32 cdleme40.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
33 cdleme40.e . . . . . . 7 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
34 cdleme40.g . . . . . . 7 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
35 cdleme40.i . . . . . . 7 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
36 cdleme40.n . . . . . . 7 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
37 cdleme40a1.y . . . . . . 7 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
38 cdleme40a1.c . . . . . . 7 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
39 cdleme40.t . . . . . . 7 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
40 cdleme40.f . . . . . . 7 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
411, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40cdleme40m 35755 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
4216, 17, 18, 19, 20, 21, 22, 26, 41syl332anc 1357 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
4342ex 450 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ((𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))) → 𝑅 / 𝑠𝑁𝐹))
44 simp1 1061 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
45 simp23l 1182 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆𝐴)
46 simp23r 1183 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ¬ 𝑆 𝑊)
47 simp21 1094 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑃𝑄)
48 simp32 1098 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆 (𝑃 𝑄))
491, 27, 28, 29, 30, 31, 32, 39, 40, 6cdleme25cl 35645 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑍𝐵)
5044, 45, 46, 47, 48, 49syl122anc 1335 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑍𝐵)
51 simp11 1091 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
52 simp12 1092 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
53 simp13 1093 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5427, 28, 30, 31cdlemb2 35327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑣𝐴𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
5551, 52, 53, 47, 54syl121anc 1331 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ∃𝑣𝐴𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
564, 12, 13, 15, 43, 50, 55riotasv3d 34246 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ 𝐵 ∈ V) → 𝑅 / 𝑠𝑁𝑍)
573, 56mpan2 707 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑍)
58 cdleme40a1.x . . . 4 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
59 cdleme40.o . . . 4 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
60 cdleme40.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, < )
6158, 59, 60, 40, 6cdleme31sn1c 35676 . . 3 ((𝑆𝐴𝑆 (𝑃 𝑄)) → 𝑆 / 𝑢𝑉 = 𝑍)
6245, 48, 61syl2anc 693 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆 / 𝑢𝑉 = 𝑍)
6357, 62neeqtrrd 2868 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑆 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  ifcif 4086   class class class wbr 4653  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Atomscatm 34550  HLchlt 34637  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme40w  35758
  Copyright terms: Public domain W3C validator