Proof of Theorem llnexchb2lem
| Step | Hyp | Ref
| Expression |
| 1 | | simpl11 1136 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
| 2 | | simpl21 1139 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
| 3 | | simpl12 1137 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝑁) |
| 4 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 5 | | llnexch.n |
. . . . . . . 8
⊢ 𝑁 = (LLines‘𝐾) |
| 6 | 4, 5 | llnbase 34795 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
| 7 | 3, 6 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ (Base‘𝐾)) |
| 8 | | hllat 34650 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 9 | 1, 8 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
| 10 | | simpl13 1138 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ 𝑁) |
| 11 | 4, 5 | llnbase 34795 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ (Base‘𝐾)) |
| 13 | | llnexch.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
| 14 | 4, 13 | latmcl 17052 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 15 | 9, 7, 12, 14 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 16 | | llnexch.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 17 | 4, 16, 13 | latmle1 17076 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 18 | 9, 7, 12, 17 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 19 | | llnexch.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 20 | | llnexch.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 21 | 4, 16, 19, 13, 20 | atmod2i2 35148 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 22 | 1, 2, 7, 15, 18, 21 | syl131anc 1339 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 23 | 4, 20 | atbase 34576 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 24 | 2, 23 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
| 25 | 4, 13 | latmcom 17075 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 26 | 9, 7, 24, 25 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 27 | | simpl23 1141 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑃 ≤ 𝑋) |
| 28 | | hlatl 34647 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 29 | 1, 28 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ AtLat) |
| 30 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 31 | 4, 16, 13, 30, 20 | atnle 34604 |
. . . . . . . . 9
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
| 32 | 29, 2, 7, 31 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
| 33 | 27, 32 | mpbid 222 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∧ 𝑋) = (0.‘𝐾)) |
| 34 | 26, 33 | eqtrd 2656 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (0.‘𝐾)) |
| 35 | 34 | oveq1d 6665 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
| 36 | | simpr 477 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) |
| 37 | | hlcvl 34646 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| 38 | 1, 37 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ CvLat) |
| 39 | | simpl3 1066 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ 𝐴) |
| 40 | | simpl22 1140 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
| 41 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑃 = (𝑋 ∧ 𝑌) → (𝑃 ≤ 𝑋 ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
| 42 | 18, 41 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 = (𝑋 ∧ 𝑌) → 𝑃 ≤ 𝑋)) |
| 43 | 42 | necon3bd 2808 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 → 𝑃 ≠ (𝑋 ∧ 𝑌))) |
| 44 | 27, 43 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ (𝑋 ∧ 𝑌)) |
| 45 | 44 | necomd 2849 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≠ 𝑃) |
| 46 | 16, 19, 20 | cvlatexchb1 34621 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≠ 𝑃) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
| 47 | 38, 39, 40, 2, 45, 46 | syl131anc 1339 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
| 48 | 36, 47 | mpbid 222 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄)) |
| 49 | 48 | oveq2d 6666 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌))) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
| 50 | 22, 35, 49 | 3eqtr3rd 2665 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
| 51 | | hlol 34648 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 52 | 1, 51 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ OL) |
| 53 | 4, 19, 30 | olj02 34513 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
| 54 | 52, 15, 53 | syl2anc 693 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
| 55 | 50, 54 | eqtr2d 2657 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
| 56 | 55 | ex 450 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |
| 57 | | simp11 1091 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ HL) |
| 58 | 57, 8 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat) |
| 59 | | simp12 1092 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ 𝑁) |
| 60 | 59, 6 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾)) |
| 61 | | simp21 1094 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑃 ∈ 𝐴) |
| 62 | | simp22 1095 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 63 | 4, 19, 20 | hlatjcl 34653 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 64 | 57, 61, 62, 63 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 65 | 4, 16, 13 | latmle2 17077 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 66 | 58, 60, 64, 65 | syl3anc 1326 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 67 | | breq1 4656 |
. . 3
⊢ ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄))) |
| 68 | 66, 67 | syl5ibrcom 237 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄))) |
| 69 | 56, 68 | impbid 202 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |