Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltval Structured version   Visualization version   GIF version

Theorem sltval 31800
Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
sltval ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem sltval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5 (𝑓 = 𝐴 → (𝑓 No 𝐴 No ))
21anbi1d 741 . . . 4 (𝑓 = 𝐴 → ((𝑓 No 𝑔 No ) ↔ (𝐴 No 𝑔 No )))
3 fveq1 6190 . . . . . . . 8 (𝑓 = 𝐴 → (𝑓𝑦) = (𝐴𝑦))
43eqeq1d 2624 . . . . . . 7 (𝑓 = 𝐴 → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝐴𝑦) = (𝑔𝑦)))
54ralbidv 2986 . . . . . 6 (𝑓 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ↔ ∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦)))
6 fveq1 6190 . . . . . . 7 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
76breq1d 4663 . . . . . 6 (𝑓 = 𝐴 → ((𝑓𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥) ↔ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)))
85, 7anbi12d 747 . . . . 5 (𝑓 = 𝐴 → ((∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)) ↔ (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥))))
98rexbidv 3052 . . . 4 (𝑓 = 𝐴 → (∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥))))
102, 9anbi12d 747 . . 3 (𝑓 = 𝐴 → (((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥))) ↔ ((𝐴 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)))))
11 eleq1 2689 . . . . 5 (𝑔 = 𝐵 → (𝑔 No 𝐵 No ))
1211anbi2d 740 . . . 4 (𝑔 = 𝐵 → ((𝐴 No 𝑔 No ) ↔ (𝐴 No 𝐵 No )))
13 fveq1 6190 . . . . . . . 8 (𝑔 = 𝐵 → (𝑔𝑦) = (𝐵𝑦))
1413eqeq2d 2632 . . . . . . 7 (𝑔 = 𝐵 → ((𝐴𝑦) = (𝑔𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
1514ralbidv 2986 . . . . . 6 (𝑔 = 𝐵 → (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ↔ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦)))
16 fveq1 6190 . . . . . . 7 (𝑔 = 𝐵 → (𝑔𝑥) = (𝐵𝑥))
1716breq2d 4665 . . . . . 6 (𝑔 = 𝐵 → ((𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥) ↔ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)))
1815, 17anbi12d 747 . . . . 5 (𝑔 = 𝐵 → ((∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)) ↔ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
1918rexbidv 3052 . . . 4 (𝑔 = 𝐵 → (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
2012, 19anbi12d 747 . . 3 (𝑔 = 𝐵 → (((𝐴 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥))) ↔ ((𝐴 No 𝐵 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)))))
21 df-slt 31797 . . 3 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝑔𝑥)))}
2210, 20, 21brabg 4994 . 2 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)))))
2322bianabs 924 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  c0 3915  {ctp 4181  cop 4183   class class class wbr 4653  Oncon0 5723  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-slt 31797
This theorem is referenced by:  sltval2  31809  sltres  31815  nolesgn2o  31824  nodense  31842  nolt02o  31845  nosupbnd2lem1  31861
  Copyright terms: Public domain W3C validator