| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sltval | Structured version Visualization version Unicode version | ||
| Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . 5
| |
| 2 | 1 | anbi1d 741 |
. . . 4
|
| 3 | fveq1 6190 |
. . . . . . . 8
| |
| 4 | 3 | eqeq1d 2624 |
. . . . . . 7
|
| 5 | 4 | ralbidv 2986 |
. . . . . 6
|
| 6 | fveq1 6190 |
. . . . . . 7
| |
| 7 | 6 | breq1d 4663 |
. . . . . 6
|
| 8 | 5, 7 | anbi12d 747 |
. . . . 5
|
| 9 | 8 | rexbidv 3052 |
. . . 4
|
| 10 | 2, 9 | anbi12d 747 |
. . 3
|
| 11 | eleq1 2689 |
. . . . 5
| |
| 12 | 11 | anbi2d 740 |
. . . 4
|
| 13 | fveq1 6190 |
. . . . . . . 8
| |
| 14 | 13 | eqeq2d 2632 |
. . . . . . 7
|
| 15 | 14 | ralbidv 2986 |
. . . . . 6
|
| 16 | fveq1 6190 |
. . . . . . 7
| |
| 17 | 16 | breq2d 4665 |
. . . . . 6
|
| 18 | 15, 17 | anbi12d 747 |
. . . . 5
|
| 19 | 18 | rexbidv 3052 |
. . . 4
|
| 20 | 12, 19 | anbi12d 747 |
. . 3
|
| 21 | df-slt 31797 |
. . 3
| |
| 22 | 10, 20, 21 | brabg 4994 |
. 2
|
| 23 | 22 | bianabs 924 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-slt 31797 |
| This theorem is referenced by: sltval2 31809 sltres 31815 nolesgn2o 31824 nodense 31842 nolt02o 31845 nosupbnd2lem1 31861 |
| Copyright terms: Public domain | W3C validator |