Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltval Structured version   Visualization version   Unicode version

Theorem sltval 31800
Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
sltval  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem sltval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( f  =  A  ->  (
f  e.  No  <->  A  e.  No ) )
21anbi1d 741 . . . 4  |-  ( f  =  A  ->  (
( f  e.  No  /\  g  e.  No )  <-> 
( A  e.  No  /\  g  e.  No ) ) )
3 fveq1 6190 . . . . . . . 8  |-  ( f  =  A  ->  (
f `  y )  =  ( A `  y ) )
43eqeq1d 2624 . . . . . . 7  |-  ( f  =  A  ->  (
( f `  y
)  =  ( g `
 y )  <->  ( A `  y )  =  ( g `  y ) ) )
54ralbidv 2986 . . . . . 6  |-  ( f  =  A  ->  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  <->  A. y  e.  x  ( A `  y )  =  ( g `  y ) ) )
6 fveq1 6190 . . . . . . 7  |-  ( f  =  A  ->  (
f `  x )  =  ( A `  x ) )
76breq1d 4663 . . . . . 6  |-  ( f  =  A  ->  (
( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x )  <->  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) )
85, 7anbi12d 747 . . . . 5  |-  ( f  =  A  ->  (
( A. y  e.  x  ( f `  y )  =  ( g `  y )  /\  ( f `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) ) )
98rexbidv 3052 . . . 4  |-  ( f  =  A  ->  ( E. x  e.  On  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  /\  ( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) )
102, 9anbi12d 747 . . 3  |-  ( f  =  A  ->  (
( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  /\  ( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) )  <-> 
( ( A  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) ) ) )
11 eleq1 2689 . . . . 5  |-  ( g  =  B  ->  (
g  e.  No  <->  B  e.  No ) )
1211anbi2d 740 . . . 4  |-  ( g  =  B  ->  (
( A  e.  No  /\  g  e.  No )  <-> 
( A  e.  No  /\  B  e.  No ) ) )
13 fveq1 6190 . . . . . . . 8  |-  ( g  =  B  ->  (
g `  y )  =  ( B `  y ) )
1413eqeq2d 2632 . . . . . . 7  |-  ( g  =  B  ->  (
( A `  y
)  =  ( g `
 y )  <->  ( A `  y )  =  ( B `  y ) ) )
1514ralbidv 2986 . . . . . 6  |-  ( g  =  B  ->  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  <->  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )
16 fveq1 6190 . . . . . . 7  |-  ( g  =  B  ->  (
g `  x )  =  ( B `  x ) )
1716breq2d 4665 . . . . . 6  |-  ( g  =  B  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x )  <->  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
1815, 17anbi12d 747 . . . . 5  |-  ( g  =  B  ->  (
( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
1918rexbidv 3052 . . . 4  |-  ( g  =  B  ->  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
2012, 19anbi12d 747 . . 3  |-  ( g  =  B  ->  (
( ( A  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) )  <->  ( ( A  e.  No  /\  B  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) ) )
21 df-slt 31797 . . 3  |-  <s 
=  { <. f ,  g >.  |  ( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y )  =  ( g `  y )  /\  ( f `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) }
2210, 20, 21brabg 4994 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( ( A  e.  No  /\  B  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) ) )
2322bianabs 924 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   (/)c0 3915   {ctp 4181   <.cop 4183   class class class wbr 4653   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-slt 31797
This theorem is referenced by:  sltval2  31809  sltres  31815  nolesgn2o  31824  nodense  31842  nolt02o  31845  nosupbnd2lem1  31861
  Copyright terms: Public domain W3C validator