| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1065 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → 𝐵 ∈
No ) |
| 2 | | nofv 31810 |
. . . . . 6
⊢ (𝐵 ∈
No → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
| 4 | | 3orel3 31593 |
. . . . 5
⊢ (¬
(𝐵‘𝑋) = 2𝑜 → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) =
1𝑜))) |
| 5 | 3, 4 | syl5com 31 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
(𝐵‘𝑋) = 2𝑜 → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) =
1𝑜))) |
| 6 | | simp13 1093 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝑋 ∈ On) |
| 7 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
| 8 | 7 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
| 9 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
| 10 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 11 | 10 | fvresd 6208 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = (𝐵‘𝑦)) |
| 12 | 10 | fvresd 6208 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = (𝐴‘𝑦)) |
| 13 | 9, 11, 12 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐵‘𝑦) = (𝐴‘𝑦)) |
| 14 | 13 | ralrimiva 2966 |
. . . . . . . . 9
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
| 15 | 14 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) →
∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
| 16 | 15 | 3ad2ant2 1083 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) →
∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
| 17 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (𝐴‘𝑋) = 2𝑜) |
| 18 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ → (𝐴‘𝑋) = 2𝑜)) |
| 19 | 18 | ancld 576 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ → ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 20 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = 1𝑜 → (𝐴‘𝑋) = 2𝑜)) |
| 21 | 20 | ancld 576 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = 1𝑜 → ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜))) |
| 22 | 19, 21 | orim12d 883 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜)))) |
| 23 | 22 | 3impia 1261 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜))) |
| 24 | | 3mix3 1232 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 25 | | 3mix2 1231 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 26 | 24, 25 | jaoi 394 |
. . . . . . . . 9
⊢ ((((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 27 | 23, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 28 | | fvex 6201 |
. . . . . . . . 9
⊢ (𝐵‘𝑋) ∈ V |
| 29 | | fvex 6201 |
. . . . . . . . 9
⊢ (𝐴‘𝑋) ∈ V |
| 30 | 28, 29 | brtp 31639 |
. . . . . . . 8
⊢ ((𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋) ↔ (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
| 31 | 27, 30 | sylibr 224 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋)) |
| 32 | | raleq 3138 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ↔ ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦))) |
| 33 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
| 34 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
| 35 | 33, 34 | breq12d 4666 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥) ↔ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋))) |
| 36 | 32, 35 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)) ↔ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋)))) |
| 37 | 36 | rspcev 3309 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥))) |
| 38 | 6, 16, 31, 37 | syl12anc 1324 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) →
∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥))) |
| 39 | | simp12 1092 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐵 ∈
No ) |
| 40 | | simp11 1091 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐴 ∈
No ) |
| 41 | | sltval 31800 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)))) |
| 42 | 39, 40, 41 | syl2anc 693 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)))) |
| 43 | 38, 42 | mpbird 247 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐵 <s 𝐴) |
| 44 | 43 | 3expia 1267 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜) → 𝐵 <s 𝐴)) |
| 45 | 5, 44 | syld 47 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
(𝐵‘𝑋) = 2𝑜 → 𝐵 <s 𝐴)) |
| 46 | 45 | con1d 139 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
𝐵 <s 𝐴 → (𝐵‘𝑋) = 2𝑜)) |
| 47 | 46 | 3impia 1261 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2𝑜) |