Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2o Structured version   Visualization version   GIF version

Theorem nolesgn2o 31824
Description: Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2𝑜, then 𝐵(𝑋) = 2𝑜. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2𝑜)

Proof of Theorem nolesgn2o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → 𝐵 No )
2 nofv 31810 . . . . . 6 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜 ∨ (𝐵𝑋) = 2𝑜))
31, 2syl 17 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜 ∨ (𝐵𝑋) = 2𝑜))
4 3orel3 31593 . . . . 5 (¬ (𝐵𝑋) = 2𝑜 → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜 ∨ (𝐵𝑋) = 2𝑜) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)))
53, 4syl5com 31 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (¬ (𝐵𝑋) = 2𝑜 → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)))
6 simp13 1093 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → 𝑋 ∈ On)
7 fveq1 6190 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
87eqcomd 2628 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
98adantr 481 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
10 simpr 477 . . . . . . . . . . . 12 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
1110fvresd 6208 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
1210fvresd 6208 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
139, 11, 123eqtr3d 2664 . . . . . . . . . 10 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → (𝐵𝑦) = (𝐴𝑦))
1413ralrimiva 2966 . . . . . . . . 9 ((𝐴𝑋) = (𝐵𝑋) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
1514adantr 481 . . . . . . . 8 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
16153ad2ant2 1083 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
17 simprr 796 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (𝐴𝑋) = 2𝑜)
1817a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → ((𝐵𝑋) = ∅ → (𝐴𝑋) = 2𝑜))
1918ancld 576 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → ((𝐵𝑋) = ∅ → ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
2017a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → ((𝐵𝑋) = 1𝑜 → (𝐴𝑋) = 2𝑜))
2120ancld 576 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → ((𝐵𝑋) = 1𝑜 → ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜)))
2219, 21orim12d 883 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜))))
23223impia 1261 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜)))
24 3mix3 1232 . . . . . . . . . 10 (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜) → (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
25 3mix2 1231 . . . . . . . . . 10 (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) → (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
2624, 25jaoi 394 . . . . . . . . 9 ((((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜)) → (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
2723, 26syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
28 fvex 6201 . . . . . . . . 9 (𝐵𝑋) ∈ V
29 fvex 6201 . . . . . . . . 9 (𝐴𝑋) ∈ V
3028, 29brtp 31639 . . . . . . . 8 ((𝐵𝑋){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑋) ↔ (((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1𝑜 ∧ (𝐴𝑋) = 2𝑜) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2𝑜)))
3127, 30sylibr 224 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → (𝐵𝑋){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑋))
32 raleq 3138 . . . . . . . . 9 (𝑥 = 𝑋 → (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ↔ ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦)))
33 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
34 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
3533, 34breq12d 4666 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥) ↔ (𝐵𝑋){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑋)))
3632, 35anbi12d 747 . . . . . . . 8 (𝑥 = 𝑋 → ((∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥)) ↔ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑋))))
3736rspcev 3309 . . . . . . 7 ((𝑋 ∈ On ∧ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑋))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥)))
386, 16, 31, 37syl12anc 1324 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥)))
39 simp12 1092 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → 𝐵 No )
40 simp11 1091 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → 𝐴 No )
41 sltval 31800 . . . . . . 7 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥))))
4239, 40, 41syl2anc 693 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴𝑥))))
4338, 42mpbird 247 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜)) → 𝐵 <s 𝐴)
44433expia 1267 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1𝑜) → 𝐵 <s 𝐴))
455, 44syld 47 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (¬ (𝐵𝑋) = 2𝑜𝐵 <s 𝐴))
4645con1d 139 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜)) → (¬ 𝐵 <s 𝐴 → (𝐵𝑋) = 2𝑜))
47463impia 1261 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2𝑜) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2𝑜)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  c0 3915  {ctp 4181  cop 4183   class class class wbr 4653  cres 5116  Oncon0 5723  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nolesgn2ores  31825
  Copyright terms: Public domain W3C validator