MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssi Structured version   Visualization version   GIF version

Theorem sorpssi 6943
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssi (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))

Proof of Theorem sorpssi
StepHypRef Expression
1 solin 5058 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵))
2 elex 3212 . . . . . 6 (𝐶𝐴𝐶 ∈ V)
32ad2antll 765 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶 ∈ V)
4 brrpssg 6939 . . . . 5 (𝐶 ∈ V → (𝐵 [] 𝐶𝐵𝐶))
53, 4syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵𝐶))
6 biidd 252 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶𝐵 = 𝐶))
7 elex 3212 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
87ad2antrl 764 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 ∈ V)
9 brrpssg 6939 . . . . 5 (𝐵 ∈ V → (𝐶 [] 𝐵𝐶𝐵))
108, 9syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶 [] 𝐵𝐶𝐵))
115, 6, 103orbi123d 1398 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵)))
121, 11mpbid 222 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
13 sspsstri 3709 . 2 ((𝐵𝐶𝐶𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
1412, 13sylibr 224 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  wpss 3575   class class class wbr 4653   Or wor 5034   [] crpss 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-so 5036  df-xp 5120  df-rel 5121  df-rpss 6937
This theorem is referenced by:  sorpssun  6944  sorpssin  6945  sorpssuni  6946  sorpssint  6947  sorpsscmpl  6948  enfin2i  9143  fin1a2lem9  9230  fin1a2lem10  9231  fin1a2lem11  9232  fin1a2lem13  9234
  Copyright terms: Public domain W3C validator