MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssint Structured version   Visualization version   GIF version

Theorem sorpssint 6947
Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssint ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
Distinct variable group:   𝑢,𝑌,𝑣

Proof of Theorem sorpssint
StepHypRef Expression
1 intss1 4492 . . . . . 6 (𝑢𝑌 𝑌𝑢)
213ad2ant2 1083 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌𝑢)
3 sorpssi 6943 . . . . . . . . . 10 (( [] Or 𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝑢𝑣𝑣𝑢))
43anassrs 680 . . . . . . . . 9 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (𝑢𝑣𝑣𝑢))
5 ax-1 6 . . . . . . . . . 10 (𝑢𝑣 → (¬ 𝑣𝑢𝑢𝑣))
6 sspss 3706 . . . . . . . . . . 11 (𝑣𝑢 ↔ (𝑣𝑢𝑣 = 𝑢))
7 orel1 397 . . . . . . . . . . . 12 𝑣𝑢 → ((𝑣𝑢𝑣 = 𝑢) → 𝑣 = 𝑢))
8 eqimss2 3658 . . . . . . . . . . . 12 (𝑣 = 𝑢𝑢𝑣)
97, 8syl6com 37 . . . . . . . . . . 11 ((𝑣𝑢𝑣 = 𝑢) → (¬ 𝑣𝑢𝑢𝑣))
106, 9sylbi 207 . . . . . . . . . 10 (𝑣𝑢 → (¬ 𝑣𝑢𝑢𝑣))
115, 10jaoi 394 . . . . . . . . 9 ((𝑢𝑣𝑣𝑢) → (¬ 𝑣𝑢𝑢𝑣))
124, 11syl 17 . . . . . . . 8 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (¬ 𝑣𝑢𝑢𝑣))
1312ralimdva 2962 . . . . . . 7 (( [] Or 𝑌𝑢𝑌) → (∀𝑣𝑌 ¬ 𝑣𝑢 → ∀𝑣𝑌 𝑢𝑣))
14133impia 1261 . . . . . 6 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → ∀𝑣𝑌 𝑢𝑣)
15 ssint 4493 . . . . . 6 (𝑢 𝑌 ↔ ∀𝑣𝑌 𝑢𝑣)
1614, 15sylibr 224 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑢 𝑌)
172, 16eqssd 3620 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌 = 𝑢)
18 simp2 1062 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑢𝑌)
1917, 18eqeltrd 2701 . . 3 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌𝑌)
2019rexlimdv3a 3033 . 2 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
21 intss1 4492 . . . . 5 (𝑣𝑌 𝑌𝑣)
22 ssnpss 3710 . . . . 5 ( 𝑌𝑣 → ¬ 𝑣 𝑌)
2321, 22syl 17 . . . 4 (𝑣𝑌 → ¬ 𝑣 𝑌)
2423rgen 2922 . . 3 𝑣𝑌 ¬ 𝑣 𝑌
25 psseq2 3695 . . . . . 6 (𝑢 = 𝑌 → (𝑣𝑢𝑣 𝑌))
2625notbid 308 . . . . 5 (𝑢 = 𝑌 → (¬ 𝑣𝑢 ↔ ¬ 𝑣 𝑌))
2726ralbidv 2986 . . . 4 (𝑢 = 𝑌 → (∀𝑣𝑌 ¬ 𝑣𝑢 ↔ ∀𝑣𝑌 ¬ 𝑣 𝑌))
2827rspcev 3309 . . 3 (( 𝑌𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣 𝑌) → ∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢)
2924, 28mpan2 707 . 2 ( 𝑌𝑌 → ∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢)
3020, 29impbid1 215 1 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  wpss 3575   cint 4475   Or wor 5034   [] crpss 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-br 4654  df-opab 4713  df-so 5036  df-xp 5120  df-rel 5121  df-rpss 6937
This theorem is referenced by:  fin2i2  9140  isfin2-2  9141
  Copyright terms: Public domain W3C validator