| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → (𝐵 ∖ 𝐶) ∈ FinII) |
| 2 | | simpll1 1100 |
. . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → 𝐴 ⊆ 𝒫 𝐵) |
| 3 | | ssel2 3598 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝒫 𝐵) |
| 4 | 3 | elpwid 4170 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → 𝑔 ⊆ 𝐵) |
| 5 | 4 | ssdifd 3746 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → (𝑔 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| 6 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (𝑓 ⊆ (𝐵 ∖ 𝐶) ↔ (𝑔 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶))) |
| 7 | 5, 6 | syl5ibrcom 237 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → (𝑓 = (𝑔 ∖ 𝐶) → 𝑓 ⊆ (𝐵 ∖ 𝐶))) |
| 8 | 7 | rexlimdva 3031 |
. . . . . 6
⊢ (𝐴 ⊆ 𝒫 𝐵 → (∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶) → 𝑓 ⊆ (𝐵 ∖ 𝐶))) |
| 9 | | vex 3203 |
. . . . . . 7
⊢ 𝑓 ∈ V |
| 10 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) |
| 11 | 10 | elrnmpt 5372 |
. . . . . . 7
⊢ (𝑓 ∈ V → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶))) |
| 12 | 9, 11 | ax-mp 5 |
. . . . . 6
⊢ (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶)) |
| 13 | | selpw 4165 |
. . . . . 6
⊢ (𝑓 ∈ 𝒫 (𝐵 ∖ 𝐶) ↔ 𝑓 ⊆ (𝐵 ∖ 𝐶)) |
| 14 | 8, 12, 13 | 3imtr4g 285 |
. . . . 5
⊢ (𝐴 ⊆ 𝒫 𝐵 → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → 𝑓 ∈ 𝒫 (𝐵 ∖ 𝐶))) |
| 15 | 14 | ssrdv 3609 |
. . . 4
⊢ (𝐴 ⊆ 𝒫 𝐵 → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) |
| 16 | 2, 15 | syl 17 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) |
| 17 | | simplrr 801 |
. . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → 𝐶 ∈ 𝐴) |
| 18 | | difid 3948 |
. . . . . . 7
⊢ (𝐶 ∖ 𝐶) = ∅ |
| 19 | 18 | eqcomi 2631 |
. . . . . 6
⊢ ∅ =
(𝐶 ∖ 𝐶) |
| 20 | | difeq1 3721 |
. . . . . . . 8
⊢ (𝑔 = 𝐶 → (𝑔 ∖ 𝐶) = (𝐶 ∖ 𝐶)) |
| 21 | 20 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑔 = 𝐶 → (∅ = (𝑔 ∖ 𝐶) ↔ ∅ = (𝐶 ∖ 𝐶))) |
| 22 | 21 | rspcev 3309 |
. . . . . 6
⊢ ((𝐶 ∈ 𝐴 ∧ ∅ = (𝐶 ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) |
| 23 | 19, 22 | mpan2 707 |
. . . . 5
⊢ (𝐶 ∈ 𝐴 → ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) |
| 24 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 25 | 10 | elrnmpt 5372 |
. . . . . 6
⊢ (∅
∈ V → (∅ ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶))) |
| 26 | 24, 25 | ax-mp 5 |
. . . . 5
⊢ (∅
∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) |
| 27 | 23, 26 | sylibr 224 |
. . . 4
⊢ (𝐶 ∈ 𝐴 → ∅ ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 28 | | ne0i 3921 |
. . . 4
⊢ (∅
∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅) |
| 29 | 17, 27, 28 | 3syl 18 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅) |
| 30 | | simpll2 1101 |
. . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
[⊊] Or 𝐴) |
| 31 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 32 | 10 | elrnmpt 5372 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑥 = (𝑔 ∖ 𝐶))) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑥 = (𝑔 ∖ 𝐶)) |
| 34 | | difeq1 3721 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑒 → (𝑔 ∖ 𝐶) = (𝑒 ∖ 𝐶)) |
| 35 | 34 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑔 = 𝑒 → (𝑥 = (𝑔 ∖ 𝐶) ↔ 𝑥 = (𝑒 ∖ 𝐶))) |
| 36 | 35 | cbvrexv 3172 |
. . . . . . . 8
⊢
(∃𝑔 ∈
𝐴 𝑥 = (𝑔 ∖ 𝐶) ↔ ∃𝑒 ∈ 𝐴 𝑥 = (𝑒 ∖ 𝐶)) |
| 37 | | sorpssi 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → (𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒)) |
| 38 | | ssdif 3745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ⊆ 𝑔 → (𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶)) |
| 39 | | ssdif 3745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ⊆ 𝑒 → (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶)) |
| 40 | 38, 39 | orim12i 538 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒) → ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) |
| 41 | 37, 40 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) |
| 42 | | sseq2 3627 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ↔ (𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶))) |
| 43 | | sseq1 3626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (𝑓 ⊆ (𝑒 ∖ 𝐶) ↔ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) |
| 44 | 42, 43 | orbi12d 746 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)) ↔ ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶)))) |
| 45 | 41, 44 | syl5ibrcom 237 |
. . . . . . . . . . . . . 14
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) |
| 46 | 45 | expr 643 |
. . . . . . . . . . . . 13
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑔 ∈ 𝐴 → (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶))))) |
| 47 | 46 | rexlimdv 3030 |
. . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) |
| 48 | 12, 47 | syl5bi 232 |
. . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) |
| 49 | 48 | ralrimiv 2965 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶))) |
| 50 | | sseq1 3626 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (𝑥 ⊆ 𝑓 ↔ (𝑒 ∖ 𝐶) ⊆ 𝑓)) |
| 51 | | sseq2 3627 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ (𝑒 ∖ 𝐶))) |
| 52 | 50, 51 | orbi12d 746 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑒 ∖ 𝐶) → ((𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥) ↔ ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) |
| 53 | 52 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥) ↔ ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) |
| 54 | 49, 53 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑥 = (𝑒 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) |
| 55 | 54 | rexlimdva 3031 |
. . . . . . . 8
⊢ (
[⊊] Or 𝐴
→ (∃𝑒 ∈
𝐴 𝑥 = (𝑒 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) |
| 56 | 36, 55 | syl5bi 232 |
. . . . . . 7
⊢ (
[⊊] Or 𝐴
→ (∃𝑔 ∈
𝐴 𝑥 = (𝑔 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) |
| 57 | 33, 56 | syl5bi 232 |
. . . . . 6
⊢ (
[⊊] Or 𝐴
→ (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) |
| 58 | 57 | ralrimiv 2965 |
. . . . 5
⊢ (
[⊊] Or 𝐴
→ ∀𝑥 ∈ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥)) |
| 59 | | sorpss 6942 |
. . . . 5
⊢ (
[⊊] Or ran (𝑔
∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∀𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥)) |
| 60 | 58, 59 | sylibr 224 |
. . . 4
⊢ (
[⊊] Or 𝐴
→ [⊊] Or ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 61 | 30, 60 | syl 17 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
[⊊] Or ran (𝑔
∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 62 | | fin2i 9117 |
. . 3
⊢ ((((𝐵 ∖ 𝐶) ∈ FinII ∧ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) ∧ (ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅ ∧ [⊊] Or
ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)))) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 63 | 1, 16, 29, 61, 62 | syl22anc 1327 |
. 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 64 | | simpll3 1102 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ¬
∪ 𝐴 ∈ 𝐴) |
| 65 | | difeq1 3721 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → (𝑔 ∖ 𝐶) = (𝑓 ∖ 𝐶)) |
| 66 | 65 | cbvmptv 4750 |
. . . . . 6
⊢ (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∈ 𝐴 ↦ (𝑓 ∖ 𝐶)) |
| 67 | 66 | elrnmpt 5372 |
. . . . 5
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → (∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑓 ∈ 𝐴 ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) |
| 68 | 67 | ibi 256 |
. . . 4
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∃𝑓 ∈ 𝐴 ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) |
| 69 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∖ 𝐶) = (ℎ ∖ 𝐶) |
| 70 | | difeq1 3721 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = ℎ → (𝑔 ∖ 𝐶) = (ℎ ∖ 𝐶)) |
| 71 | 70 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → ((ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶) ↔ (ℎ ∖ 𝐶) = (ℎ ∖ 𝐶))) |
| 72 | 71 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ ∈ 𝐴 ∧ (ℎ ∖ 𝐶) = (ℎ ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 73 | 69, 72 | mpan2 707 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ 𝐴 → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 74 | 73 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 75 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ ℎ ∈ V |
| 76 | | difexg 4808 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ V → (ℎ ∖ 𝐶) ∈ V) |
| 77 | 10 | elrnmpt 5372 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∖ 𝐶) ∈ V → ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶))) |
| 78 | 75, 76, 77 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 79 | 74, 78 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 80 | | elssuni 4467 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → (ℎ ∖ 𝐶) ⊆ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 81 | 79, 80 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 82 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) |
| 83 | 81, 82 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶)) |
| 84 | 83 | adantll 750 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶)) |
| 85 | | unss2 3784 |
. . . . . . . . . . 11
⊢ ((ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶) → (𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶))) |
| 86 | | uncom 3757 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∪ (ℎ ∖ 𝐶)) = ((ℎ ∖ 𝐶) ∪ 𝐶) |
| 87 | | undif1 4043 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∖ 𝐶) ∪ 𝐶) = (ℎ ∪ 𝐶) |
| 88 | 86, 87 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∪ (ℎ ∖ 𝐶)) = (ℎ ∪ 𝐶) |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝐶 ∪ (ℎ ∖ 𝐶)) = (ℎ ∪ 𝐶)) |
| 90 | 64 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ¬ ∪
𝐴 ∈ 𝐴) |
| 91 | 17 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝐶 ∈ 𝐴) |
| 92 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) |
| 93 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∖ 𝐶) = (𝑥 ∖ 𝐶) |
| 94 | | difeq1 3721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑔 = 𝑥 → (𝑔 ∖ 𝐶) = (𝑥 ∖ 𝐶)) |
| 95 | 94 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔 = 𝑥 → ((𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶) ↔ (𝑥 ∖ 𝐶) = (𝑥 ∖ 𝐶))) |
| 96 | 95 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∖ 𝐶) = (𝑥 ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 97 | 93, 96 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ 𝐴 → ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 98 | | difexg 4808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ V → (𝑥 ∖ 𝐶) ∈ V) |
| 99 | 10 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∖ 𝐶) ∈ V → ((𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶))) |
| 100 | 31, 98, 99 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) |
| 101 | 97, 100 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 102 | 101 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 103 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) |
| 104 | | ssdif0 3942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ⊆ 𝐶 ↔ (𝑓 ∖ 𝐶) = ∅) |
| 105 | 104 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ⊆ 𝐶 → (𝑓 ∖ 𝐶) = ∅) |
| 106 | 105 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑓 ∖ 𝐶) = ∅) |
| 107 | 103, 106 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = ∅) |
| 108 | | uni0c 4464 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = ∅ ↔ ∀𝑒 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))𝑒 = ∅) |
| 109 | 107, 108 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∀𝑒 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))𝑒 = ∅) |
| 110 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑒 = (𝑥 ∖ 𝐶) → (𝑒 = ∅ ↔ (𝑥 ∖ 𝐶) = ∅)) |
| 111 | 110 | rspcva 3307 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∧ ∀𝑒 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))𝑒 = ∅) → (𝑥 ∖ 𝐶) = ∅) |
| 112 | 102, 109,
111 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∖ 𝐶) = ∅) |
| 113 | | ssdif0 3942 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ⊆ 𝐶 ↔ (𝑥 ∖ 𝐶) = ∅) |
| 114 | 112, 113 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐶) |
| 115 | 114 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶) |
| 116 | | unissb 4469 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝐴
⊆ 𝐶 ↔
∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶) |
| 117 | 115, 116 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 ⊆ 𝐶) |
| 118 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝐴) |
| 119 | 118 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → 𝐶 ⊆ ∪ 𝐴) |
| 120 | 117, 119 | eqssd 3620 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 = 𝐶) |
| 121 | | simpll 790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → 𝐶 ∈ 𝐴) |
| 122 | 120, 121 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 ∈ 𝐴) |
| 123 | 122 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) → (𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴)) |
| 124 | 91, 92, 123 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴)) |
| 125 | 90, 124 | mtod 189 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ¬ 𝑓 ⊆ 𝐶) |
| 126 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → [⊊] Or 𝐴) |
| 127 | | simplrl 800 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝑓 ∈ 𝐴) |
| 128 | | sorpssi 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑓 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓)) |
| 129 | 126, 127,
91, 128 | syl12anc 1324 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓)) |
| 130 | | orel1 397 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑓 ⊆ 𝐶 → ((𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓) → 𝐶 ⊆ 𝑓)) |
| 131 | 125, 129,
130 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝐶 ⊆ 𝑓) |
| 132 | | undif 4049 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝑓 ↔ (𝐶 ∪ (𝑓 ∖ 𝐶)) = 𝑓) |
| 133 | 131, 132 | sylib 208 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝐶 ∪ (𝑓 ∖ 𝐶)) = 𝑓) |
| 134 | 89, 133 | sseq12d 3634 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶)) ↔ (ℎ ∪ 𝐶) ⊆ 𝑓)) |
| 135 | | ssun1 3776 |
. . . . . . . . . . . . 13
⊢ ℎ ⊆ (ℎ ∪ 𝐶) |
| 136 | | sstr 3611 |
. . . . . . . . . . . . 13
⊢ ((ℎ ⊆ (ℎ ∪ 𝐶) ∧ (ℎ ∪ 𝐶) ⊆ 𝑓) → ℎ ⊆ 𝑓) |
| 137 | 135, 136 | mpan 706 |
. . . . . . . . . . . 12
⊢ ((ℎ ∪ 𝐶) ⊆ 𝑓 → ℎ ⊆ 𝑓) |
| 138 | 134, 137 | syl6bi 243 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶)) → ℎ ⊆ 𝑓)) |
| 139 | 85, 138 | syl5 34 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶) → ℎ ⊆ 𝑓)) |
| 140 | 84, 139 | mpd 15 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ℎ ⊆ 𝑓) |
| 141 | 140 | ralrimiva 2966 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∀ℎ ∈ 𝐴 ℎ ⊆ 𝑓) |
| 142 | | unissb 4469 |
. . . . . . . 8
⊢ (∪ 𝐴
⊆ 𝑓 ↔
∀ℎ ∈ 𝐴 ℎ ⊆ 𝑓) |
| 143 | 141, 142 | sylibr 224 |
. . . . . . 7
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 ⊆ 𝑓) |
| 144 | | elssuni 4467 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴) |
| 145 | 144 | ad2antrl 764 |
. . . . . . 7
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → 𝑓 ⊆ ∪ 𝐴) |
| 146 | 143, 145 | eqssd 3620 |
. . . . . 6
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 = 𝑓) |
| 147 | | simprl 794 |
. . . . . 6
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → 𝑓 ∈ 𝐴) |
| 148 | 146, 147 | eqeltrd 2701 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 ∈ 𝐴) |
| 149 | 148 | rexlimdvaa 3032 |
. . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
(∃𝑓 ∈ 𝐴 ∪
ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶) → ∪ 𝐴 ∈ 𝐴)) |
| 150 | 68, 149 | syl5 34 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∪ 𝐴 ∈ 𝐴)) |
| 151 | 64, 150 | mtod 189 |
. 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ¬
∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) |
| 152 | 63, 151 | pm2.65da 600 |
1
⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∖ 𝐶) ∈ FinII) |