Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splvalpfx Structured version   Visualization version   GIF version

Theorem splvalpfx 41435
Description: Value of the substring replacement operator. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
splvalpfx ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (#‘𝑆)⟩)))

Proof of Theorem splvalpfx
StepHypRef Expression
1 splval 13502 . 2 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 substr ⟨0, 𝐹⟩) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (#‘𝑆)⟩)))
2 pfxval 41383 . . . . . 6 ((𝑆𝑉𝐹 ∈ ℕ0) → (𝑆 prefix 𝐹) = (𝑆 substr ⟨0, 𝐹⟩))
323ad2antr1 1226 . . . . 5 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (𝑆 prefix 𝐹) = (𝑆 substr ⟨0, 𝐹⟩))
43eqcomd 2628 . . . 4 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (𝑆 substr ⟨0, 𝐹⟩) = (𝑆 prefix 𝐹))
54oveq1d 6665 . . 3 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → ((𝑆 substr ⟨0, 𝐹⟩) ++ 𝑅) = ((𝑆 prefix 𝐹) ++ 𝑅))
65oveq1d 6665 . 2 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (((𝑆 substr ⟨0, 𝐹⟩) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (#‘𝑆)⟩)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (#‘𝑆)⟩)))
71, 6eqtrd 2656 1 ((𝑆𝑉 ∧ (𝐹 ∈ ℕ0𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (#‘𝑆)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183  cotp 4185  cfv 5888  (class class class)co 6650  0cc0 9936  0cn0 11292  #chash 13117   ++ cconcat 13293   substr csubstr 13295   splice csplice 13296   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-splice 13304  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator