![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > splvalpfx | Structured version Visualization version GIF version |
Description: Value of the substring replacement operator. (Contributed by AV, 11-May-2020.) |
Ref | Expression |
---|---|
splvalpfx | ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (#‘𝑆)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | splval 13502 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (#‘𝑆)〉))) | |
2 | pfxval 41383 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℕ0) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) | |
3 | 2 | 3ad2antr1 1226 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) |
4 | 3 | eqcomd 2628 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 substr 〈0, 𝐹〉) = (𝑆 prefix 𝐹)) |
5 | 4 | oveq1d 6665 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → ((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) = ((𝑆 prefix 𝐹) ++ 𝑅)) |
6 | 5 | oveq1d 6665 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (#‘𝑆)〉)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (#‘𝑆)〉))) |
7 | 1, 6 | eqtrd 2656 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (#‘𝑆)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 〈cop 4183 〈cotp 4185 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ℕ0cn0 11292 #chash 13117 ++ cconcat 13293 substr csubstr 13295 splice csplice 13296 prefix cpfx 41381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-splice 13304 df-pfx 41382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |