Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuccatpfxs1 Structured version   Visualization version   GIF version

Theorem reuccatpfxs1 41434
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. Could replace reuccats1 13480. (Contributed by AV, 10-May-2020.)
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑤,𝑥   𝑣,𝑊,𝑤,𝑥   𝑣,𝑋,𝑤,𝑥

Proof of Theorem reuccatpfxs1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 s1eq 13380 . . . . 5 (𝑣 = 𝑢 → ⟨“𝑣”⟩ = ⟨“𝑢”⟩)
21oveq2d 6666 . . . 4 (𝑣 = 𝑢 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
32eleq1d 2686 . . 3 (𝑣 = 𝑢 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
43reu8 3402 . 2 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
5 simprl 794 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
6 simpl 473 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
76ad2antrr 762 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
87anim1i 592 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 ∈ Word 𝑉𝑤𝑋))
9 simplrr 801 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
10 simp-4r 807 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))
11 reuccatpfxs1lem 41433 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑤𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑤 prefix (#‘𝑊)) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
128, 9, 10, 11syl3anc 1326 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 = (𝑤 prefix (#‘𝑊)) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
136anim1i 592 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉𝑣𝑉))
1413adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ∈ Word 𝑉𝑣𝑉))
1514ad2antrr 762 . . . . . . . . . . . . . 14 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ∈ Word 𝑉𝑣𝑉))
16 lswccats1 13411 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑣𝑉) → ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)) = 𝑣)
1715, 16syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)) = 𝑣)
1817eqcomd 2628 . . . . . . . . . . . 12 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑣 = ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)))
1918s1eqd 13381 . . . . . . . . . . 11 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → ⟨“𝑣”⟩ = ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)
2019oveq2d 6666 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩))
21 id 22 . . . . . . . . . . . 12 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩))
22 fveq2 6191 . . . . . . . . . . . . . 14 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)))
2322s1eqd 13381 . . . . . . . . . . . . 13 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ⟨“( lastS ‘𝑤)”⟩ = ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)
2423oveq2d 6666 . . . . . . . . . . . 12 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩))
2521, 24eqeq12d 2637 . . . . . . . . . . 11 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) ↔ (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)))
2625adantl 482 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) ↔ (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)))
2720, 26mpbird 247 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩))
28 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥 ∈ Word 𝑉𝑤 ∈ Word 𝑉))
29 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (#‘𝑥) = (#‘𝑤))
3029eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((#‘𝑥) = ((#‘𝑊) + 1) ↔ (#‘𝑤) = ((#‘𝑊) + 1)))
3128, 30anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) ↔ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3231rspcva 3307 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
33 3anass 1042 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3433simplbi2com 657 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3532, 34syl 17 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3635ex 450 . . . . . . . . . . . . . . 15 (𝑤𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))))
3736com13 88 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))))
3837imp 445 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3938ad2antrr 762 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
4039imp 445 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
4140adantr 481 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
42 ccats1pfxeqbi 41431 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩)))
4341, 42syl 17 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩)))
4427, 43mpbird 247 . . . . . . . 8 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑤 prefix (#‘𝑊)))
4544ex 450 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑤 prefix (#‘𝑊))))
4612, 45impbid 202 . . . . . 6 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
4746ralrimiva 2966 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑤𝑋 (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
48 reu6i 3397 . . . . 5 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑤𝑋 (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊)))
495, 47, 48syl2anc 693 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊)))
5049ex 450 . . 3 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
5150rexlimdva 3031 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
524, 51syl5bi 232 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939  #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293  ⟨“cs1 13294   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator