Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf Structured version   Visualization version   GIF version

Theorem sprsymrelf 41745
Description: The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf 𝐹:𝑃𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 sprsymrelfvlem 41740 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
3 prcom 4267 . . . . . . . . . 10 {𝑥, 𝑦} = {𝑦, 𝑥}
43a1i 11 . . . . . . . . 9 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → {𝑥, 𝑦} = {𝑦, 𝑥})
54eqeq2d 2632 . . . . . . . 8 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑦, 𝑥}))
65rexbidva 3049 . . . . . . 7 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
7 df-br 4654 . . . . . . . 8 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
8 opabid 4982 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
97, 8bitri 264 . . . . . . 7 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
10 vex 3203 . . . . . . . 8 𝑦 ∈ V
11 vex 3203 . . . . . . . 8 𝑥 ∈ V
12 preq12 4270 . . . . . . . . . 10 ((𝑎 = 𝑦𝑏 = 𝑥) → {𝑎, 𝑏} = {𝑦, 𝑥})
1312eqeq2d 2632 . . . . . . . . 9 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑐 = {𝑎, 𝑏} ↔ 𝑐 = {𝑦, 𝑥}))
1413rexbidv 3052 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (∃𝑐𝑝 𝑐 = {𝑎, 𝑏} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
15 preq12 4270 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → {𝑥, 𝑦} = {𝑎, 𝑏})
1615eqeq2d 2632 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑎, 𝑏}))
1716rexbidv 3052 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}))
1817cbvopabv 4722 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}}
1910, 11, 14, 18braba 4992 . . . . . . 7 (𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥 ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥})
206, 9, 193bitr4g 303 . . . . . 6 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
2120ralrimivva 2971 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
222, 21jca 554 . . . 4 (𝑝 ⊆ (Pairs‘𝑉) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
23 sprsymrelf.p . . . . . 6 𝑃 = 𝒫 (Pairs‘𝑉)
2423eleq2i 2693 . . . . 5 (𝑝𝑃𝑝 ∈ 𝒫 (Pairs‘𝑉))
25 vex 3203 . . . . . 6 𝑝 ∈ V
2625elpw 4164 . . . . 5 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑝 ⊆ (Pairs‘𝑉))
2724, 26bitri 264 . . . 4 (𝑝𝑃𝑝 ⊆ (Pairs‘𝑉))
28 nfopab1 4719 . . . . . . 7 𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
2928nfeq2 2780 . . . . . 6 𝑥 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
30 nfopab2 4720 . . . . . . . 8 𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
3130nfeq2 2780 . . . . . . 7 𝑦 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
32 breq 4655 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑥𝑟𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦))
33 breq 4655 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑦𝑟𝑥𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
3432, 33bibi12d 335 . . . . . . 7 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3531, 34ralbid 2983 . . . . . 6 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3629, 35ralbid 2983 . . . . 5 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3736elrab 3363 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)} ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3822, 27, 373imtr4i 281 . . 3 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)})
39 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
4038, 39syl6eleqr 2712 . 2 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝑅)
411, 40fmpti 6383 1 𝐹:𝑃𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  𝒫 cpw 4158  {cpr 4179  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by:  sprsymrelf1  41746  sprsymrelfo  41747
  Copyright terms: Public domain W3C validator