| Step | Hyp | Ref
| Expression |
| 1 | | prssspr 41735 |
. . . . . 6
⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑝 ∈ 𝑎) → ∃𝑖 ∈ 𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗}) |
| 2 | 1 | ad4ant14 1293 |
. . . . 5
⊢ ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → ∃𝑖 ∈ 𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗}) |
| 3 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗}) |
| 4 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → 𝑝 = {𝑖, 𝑗}) |
| 5 | 4 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 ↔ {𝑖, 𝑗} ∈ 𝑎)) |
| 6 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} ∈ 𝑎) |
| 7 | | eqeq1 2626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗})) |
| 8 | 7 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗})) |
| 9 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} = {𝑖, 𝑗}) |
| 10 | 6, 8, 9 | rspcedvd 3317 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗}) |
| 11 | 10 | adantlr 751 |
. . . . . . . . . . . . 13
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗}) |
| 12 | | preq12 4270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → {𝑥, 𝑦} = {𝑖, 𝑗}) |
| 13 | 12 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑖, 𝑗})) |
| 14 | 13 | rexbidv 3052 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗})) |
| 15 | 14 | opelopabga 4988 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗})) |
| 16 | 15 | bicomd 213 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 17 | 16 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 18 | 11, 17 | mpbid 222 |
. . . . . . . . . . . 12
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}}) |
| 19 | 18 | ex 450 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → ({𝑖, 𝑗} ∈ 𝑎 → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 20 | 5, 19 | sylbid 230 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 21 | | eleq2 2690 |
. . . . . . . . . . . 12
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) |
| 22 | 21 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) |
| 23 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑖 ∈ V |
| 24 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑗 ∈ V |
| 25 | 13 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗})) |
| 26 | 25 | opelopabga 4988 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗})) |
| 27 | 23, 24, 26 | mp2an 708 |
. . . . . . . . . . . 12
⊢
(〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗}) |
| 28 | | eqtr3 2643 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑝 = 𝑐) |
| 29 | 28 | equcomd 1946 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑐 = 𝑝) |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 ∈ 𝑏 ↔ 𝑝 ∈ 𝑏)) |
| 31 | 30 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 ∈ 𝑏 → 𝑝 ∈ 𝑏)) |
| 32 | 31 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} → (𝑐 ∈ 𝑏 → 𝑝 ∈ 𝑏))) |
| 33 | 32 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ 𝑏 → (𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏))) |
| 34 | 33 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑏 ∧ 𝑐 = {𝑖, 𝑗}) → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 35 | 34 | rexlimiva 3028 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑐 ∈
𝑏 𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 36 | 35 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {𝑖, 𝑗} → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 38 | 37 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 39 | 27, 38 | syl5bi 232 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ 𝑏)) |
| 40 | 22, 39 | sylbid 230 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ 𝑏)) |
| 41 | 20, 40 | syld 47 |
. . . . . . . . 9
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 → 𝑝 ∈ 𝑏)) |
| 42 | 41 | expimpd 629 |
. . . . . . . 8
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏)) |
| 43 | 42 | ex 450 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) → (𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏))) |
| 44 | 43 | rexlimdva 3031 |
. . . . . 6
⊢ (𝑖 ∈ 𝑉 → (∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏))) |
| 45 | 44 | rexlimiv 3027 |
. . . . 5
⊢
(∃𝑖 ∈
𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏)) |
| 46 | 2, 45 | mpcom 38 |
. . . 4
⊢ ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏) |
| 47 | 46 | ex 450 |
. . 3
⊢ (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) → (𝑝 ∈ 𝑎 → 𝑝 ∈ 𝑏)) |
| 48 | 47 | ssrdv 3609 |
. 2
⊢ (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎 ⊆ 𝑏) |
| 49 | 48 | ex 450 |
1
⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) |