MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssceq Structured version   Visualization version   GIF version

Theorem ssceq 16486
Description: The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssceq ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)

Proof of Theorem ssceq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴cat 𝐵)
2 eqidd 2623 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 16477 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 simpr 477 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵cat 𝐴)
5 eqidd 2623 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 = dom dom 𝐵)
64, 5sscfn1 16477 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
73, 6, 1ssc1 16481 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 ⊆ dom dom 𝐵)
86, 3, 4ssc1 16481 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 ⊆ dom dom 𝐴)
97, 8eqssd 3620 . . 3 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐵)
109sqxpeqd 5141 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵))
113adantr 481 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
121adantr 481 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
13 simprl 794 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
14 simprr 796 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1511, 12, 13, 14ssc2 16482 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
166adantr 481 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
174adantr 481 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐴)
187adantr 481 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
1918, 13sseldd 3604 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2018, 14sseldd 3604 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2116, 17, 19, 20ssc2 16482 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐴𝑦))
2215, 21eqssd 3620 . . 3 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) = (𝑥𝐵𝑦))
2322ralrimivva 2971 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))
24 eqfnov 6766 . . 3 ((𝐴 Fn (dom dom 𝐴 × dom dom 𝐴) ∧ 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
253, 6, 24syl2anc 693 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
2610, 23, 25mpbir2and 957 1 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653   × cxp 5112  dom cdm 5114   Fn wfn 5883  (class class class)co 6650  cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ixp 7909  df-ssc 16470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator