MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc2 Structured version   Visualization version   GIF version

Theorem ssc2 16482
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
ssc2.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
ssc2.2 (𝜑𝐻cat 𝐽)
ssc2.3 (𝜑𝑋𝑆)
ssc2.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
ssc2 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))

Proof of Theorem ssc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc2.3 . 2 (𝜑𝑋𝑆)
2 ssc2.4 . 2 (𝜑𝑌𝑆)
3 ssc2.2 . . . 4 (𝜑𝐻cat 𝐽)
4 ssc2.1 . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 eqidd 2623 . . . . . 6 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
63, 5sscfn2 16478 . . . . 5 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
7 sscrel 16473 . . . . . . 7 Rel ⊆cat
87brrelex2i 5159 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
9 dmexg 7097 . . . . . 6 (𝐽 ∈ V → dom 𝐽 ∈ V)
10 dmexg 7097 . . . . . 6 (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V)
113, 8, 9, 104syl 19 . . . . 5 (𝜑 → dom dom 𝐽 ∈ V)
124, 6, 11isssc 16480 . . . 4 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
133, 12mpbid 222 . . 3 (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1413simprd 479 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
15 oveq1 6657 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
16 oveq1 6657 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦))
1715, 16sseq12d 3634 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦)))
18 oveq2 6658 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
19 oveq2 6658 . . . 4 (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌))
2018, 19sseq12d 3634 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)))
2117, 20rspc2va 3323 . 2 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
221, 2, 14, 21syl21anc 1325 1 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574   class class class wbr 4653   × cxp 5112  dom cdm 5114   Fn wfn 5883  (class class class)co 6650  cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  ssctr  16485  ssceq  16486  subcss2  16503
  Copyright terms: Public domain W3C validator