Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltun1 Structured version   Visualization version   GIF version

Theorem ssltun1 31915
Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
ssltun1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)

Proof of Theorem ssltun1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 31901 . . . 4 (𝐴 <<s 𝐶𝐴 ∈ V)
2 ssltex1 31901 . . . 4 (𝐵 <<s 𝐶𝐵 ∈ V)
3 unexg 6959 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3syl2an 494 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ∈ V)
5 ssltex2 31902 . . . 4 (𝐴 <<s 𝐶𝐶 ∈ V)
65adantr 481 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 ∈ V)
74, 6jca 554 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → ((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V))
8 ssltss1 31903 . . . . 5 (𝐴 <<s 𝐶𝐴 No )
98adantr 481 . . . 4 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐴 No )
10 ssltss1 31903 . . . . 5 (𝐵 <<s 𝐶𝐵 No )
1110adantl 482 . . . 4 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐵 No )
129, 11unssd 3789 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ⊆ No )
13 ssltss2 31904 . . . 4 (𝐵 <<s 𝐶𝐶 No )
1413adantl 482 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 No )
15 ssltsep 31905 . . . . 5 (𝐴 <<s 𝐶 → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
1615adantr 481 . . . 4 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
17 ssltsep 31905 . . . . 5 (𝐵 <<s 𝐶 → ∀𝑥𝐵𝑦𝐶 𝑥 <s 𝑦)
1817adantl 482 . . . 4 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → ∀𝑥𝐵𝑦𝐶 𝑥 <s 𝑦)
19 ralunb 3794 . . . 4 (∀𝑥 ∈ (𝐴𝐵)∀𝑦𝐶 𝑥 <s 𝑦 ↔ (∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 ∧ ∀𝑥𝐵𝑦𝐶 𝑥 <s 𝑦))
2016, 18, 19sylanbrc 698 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → ∀𝑥 ∈ (𝐴𝐵)∀𝑦𝐶 𝑥 <s 𝑦)
2112, 14, 203jca 1242 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → ((𝐴𝐵) ⊆ No 𝐶 No ∧ ∀𝑥 ∈ (𝐴𝐵)∀𝑦𝐶 𝑥 <s 𝑦))
22 brsslt 31900 . 2 ((𝐴𝐵) <<s 𝐶 ↔ (((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V) ∧ ((𝐴𝐵) ⊆ No 𝐶 No ∧ ∀𝑥 ∈ (𝐴𝐵)∀𝑦𝐶 𝑥 <s 𝑦)))
237, 21, 22sylanbrc 698 1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574   class class class wbr 4653   No csur 31793   <s cslt 31794   <<s csslt 31896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-sslt 31897
This theorem is referenced by:  scutun12  31917
  Copyright terms: Public domain W3C validator