Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltun1 Structured version   Visualization version   Unicode version

Theorem ssltun1 31915
Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
ssltun1  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( A  u.  B
) < <s
C )

Proof of Theorem ssltun1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 31901 . . . 4  |-  ( A < <s C  ->  A  e.  _V )
2 ssltex1 31901 . . . 4  |-  ( B < <s C  ->  B  e.  _V )
3 unexg 6959 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
41, 2, 3syl2an 494 . . 3  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( A  u.  B
)  e.  _V )
5 ssltex2 31902 . . . 4  |-  ( A < <s C  ->  C  e.  _V )
65adantr 481 . . 3  |-  ( ( A < <s
C  /\  B < <s C )  ->  C  e.  _V )
74, 6jca 554 . 2  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( ( A  u.  B )  e.  _V  /\  C  e.  _V )
)
8 ssltss1 31903 . . . . 5  |-  ( A < <s C  ->  A  C_  No )
98adantr 481 . . . 4  |-  ( ( A < <s
C  /\  B < <s C )  ->  A  C_  No )
10 ssltss1 31903 . . . . 5  |-  ( B < <s C  ->  B  C_  No )
1110adantl 482 . . . 4  |-  ( ( A < <s
C  /\  B < <s C )  ->  B  C_  No )
129, 11unssd 3789 . . 3  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( A  u.  B
)  C_  No )
13 ssltss2 31904 . . . 4  |-  ( B < <s C  ->  C  C_  No )
1413adantl 482 . . 3  |-  ( ( A < <s
C  /\  B < <s C )  ->  C  C_  No )
15 ssltsep 31905 . . . . 5  |-  ( A < <s C  ->  A. x  e.  A  A. y  e.  C  x <s y )
1615adantr 481 . . . 4  |-  ( ( A < <s
C  /\  B < <s C )  ->  A. x  e.  A  A. y  e.  C  x <s y )
17 ssltsep 31905 . . . . 5  |-  ( B < <s C  ->  A. x  e.  B  A. y  e.  C  x <s y )
1817adantl 482 . . . 4  |-  ( ( A < <s
C  /\  B < <s C )  ->  A. x  e.  B  A. y  e.  C  x <s y )
19 ralunb 3794 . . . 4  |-  ( A. x  e.  ( A  u.  B ) A. y  e.  C  x <s y  <->  ( A. x  e.  A  A. y  e.  C  x <s y  /\  A. x  e.  B  A. y  e.  C  x <s y ) )
2016, 18, 19sylanbrc 698 . . 3  |-  ( ( A < <s
C  /\  B < <s C )  ->  A. x  e.  ( A  u.  B ) A. y  e.  C  x <s y )
2112, 14, 203jca 1242 . 2  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( ( A  u.  B )  C_  No  /\  C  C_  No  /\  A. x  e.  ( A  u.  B ) A. y  e.  C  x <s y ) )
22 brsslt 31900 . 2  |-  ( ( A  u.  B ) < <s C  <-> 
( ( ( A  u.  B )  e. 
_V  /\  C  e.  _V )  /\  (
( A  u.  B
)  C_  No  /\  C  C_  No  /\  A. x  e.  ( A  u.  B
) A. y  e.  C  x <s
y ) ) )
237, 21, 22sylanbrc 698 1  |-  ( ( A < <s
C  /\  B < <s C )  -> 
( A  u.  B
) < <s
C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653   Nocsur 31793   <scslt 31794   < <scsslt 31896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-sslt 31897
This theorem is referenced by:  scutun12  31917
  Copyright terms: Public domain W3C validator