| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpcf | Structured version Visualization version GIF version | ||
| Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 39156, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 39157, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwimpcf | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | id 22 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐴) | |
| 4 | elpwi 4168 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
| 6 | sstr2 3610 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 7 | 6 | impcom 446 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 2, 5, 7 | syl2an 494 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
| 9 | elpwg 4166 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 10 | 9 | biimpar 502 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑥 ⊆ 𝐵) → 𝑥 ∈ 𝒫 𝐵) |
| 11 | 1, 8, 10 | eel021old 38925 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵) |
| 12 | 11 | ex 450 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
| 13 | 12 | alrimiv 1855 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
| 14 | dfss2 3591 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
| 15 | 14 | biimpri 218 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 17 | 16 | iin1 38788 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |