Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relowlssretop Structured version   Visualization version   GIF version

Theorem relowlssretop 33211
Description: The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020.)
Hypothesis
Ref Expression
relowlssretop.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
relowlssretop (topGen‘ran (,)) ⊆ (topGen‘𝐼)

Proof of Theorem relowlssretop
Dummy variables 𝑎 𝑏 𝑖 𝑜 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12271 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6045 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 6810 . . . . . 6 ((,) Fn (ℝ* × ℝ*) → (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . . . 5 (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏))
5 elxr 11950 . . . . . . . . . 10 (𝑏 ∈ ℝ* ↔ (𝑏 ∈ ℝ ∨ 𝑏 = +∞ ∨ 𝑏 = -∞))
6 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
7 elioore 12205 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
86, 7anim12ci 591 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ))
9 relowlssretop.1 . . . . . . . . . . . . . . . 16 𝐼 = ([,) “ (ℝ × ℝ))
109icoreelrn 33209 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼)
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼)
127adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
137leidd 10594 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥𝑥)
1413adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥𝑥)
156rexrd 10089 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → 𝑏 ∈ ℝ*)
16 elioo1 12215 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) ↔ (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏)))
1715, 16syldan 487 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → (𝑥 ∈ (𝑎(,)𝑏) ↔ (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏)))
1817biimpa 501 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏))
1918simp3d 1075 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 < 𝑏)
20 rexr 10085 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21203anim1i 1248 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏))
22 rexr 10085 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ*)
23 elico1 12218 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑥[,)𝑏) ↔ (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏)))
2420, 22, 23syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 ∈ (𝑥[,)𝑏) ↔ (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏)))
2524biimprd 238 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ (𝑥[,)𝑏)))
268, 21, 25syl2im 40 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ (𝑥[,)𝑏)))
27 icoreval 33201 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
288, 27syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
2928eleq2d 2687 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ (𝑥[,)𝑏) ↔ 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
3026, 29sylibd 229 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
3112, 14, 19, 30mp3and 1427 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
32 nfv 1843 . . . . . . . . . . . . . . . 16 𝑧((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏))
33 nfrab1 3122 . . . . . . . . . . . . . . . 16 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}
34 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑧(𝑎(,)𝑏)
35 iooval 12199 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎(,)𝑏) = {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)})
3635eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)}))
3736anbi1d 741 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}) ↔ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})))
3837pm5.32i 669 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})))
39 rabid 3116 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ↔ (𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)))
40 rabid 3116 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))
4139, 40anbi12i 733 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}) ↔ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))))
42 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 ∈ ℝ)
4342rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 ∈ ℝ*)
4443ad2antll 765 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ ℝ*)
45 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) → 𝑥 ∈ ℝ*)
4645, 43anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))) → (𝑥 ∈ ℝ*𝑧 ∈ ℝ*))
4746anim2i 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 ∈ ℝ* ∧ (𝑥 ∈ ℝ*𝑧 ∈ ℝ*)))
48 3anass 1042 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) ↔ (𝑎 ∈ ℝ* ∧ (𝑥 ∈ ℝ*𝑧 ∈ ℝ*)))
4947, 48sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*))
50 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) → 𝑎 < 𝑥)
51 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑥𝑧)
5250, 51anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))) → (𝑎 < 𝑥𝑥𝑧))
5352adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 < 𝑥𝑥𝑧))
54 xrltletr 11988 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑎 < 𝑥𝑥𝑧) → 𝑎 < 𝑧))
5549, 53, 54sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑎 < 𝑧)
56 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 < 𝑏)
5756ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 < 𝑏)
5855, 57jca 554 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 < 𝑧𝑧 < 𝑏))
59 rabid 3116 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ* ∧ (𝑎 < 𝑧𝑧 < 𝑏)))
6044, 58, 59sylanbrc 698 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6160adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
62 iooval 12199 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎(,)𝑏) = {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6362adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎(,)𝑏) = {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6461, 63eleqtrrd 2704 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ (𝑎(,)𝑏))
6541, 64sylan2b 492 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) → 𝑧 ∈ (𝑎(,)𝑏))
6638, 65sylbi 207 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) → 𝑧 ∈ (𝑎(,)𝑏))
6766expr 643 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → 𝑧 ∈ (𝑎(,)𝑏)))
6832, 33, 34, 67ssrd 3608 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))
6922, 68sylanl2 683 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))
70 eleq2 2690 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → (𝑥𝑖𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
71 sseq1 3626 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → (𝑖 ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏)))
7270, 71anbi12d 747 . . . . . . . . . . . . . . 15 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → ((𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))))
7372rspcev 3309 . . . . . . . . . . . . . 14 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼 ∧ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7411, 31, 69, 73syl12anc 1324 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7574ancom1s 847 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7675expl 648 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
777adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
78 peano2re 10209 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 + 1) ∈ ℝ)
809icoreelrn 33209 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼)
8177, 79, 80syl2anc 693 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼)
82 elioore 12205 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑎(,)+∞) → 𝑥 ∈ ℝ)
8382adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 ∈ ℝ)
8483leidd 10594 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥𝑥)
8583ltp1d 10954 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 < (𝑥 + 1))
8683, 84, 85jca32 558 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ ℝ ∧ (𝑥𝑥𝑥 < (𝑥 + 1))))
87 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 → (𝑥𝑧𝑥𝑥))
88 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 → (𝑧 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
8987, 88anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝑥𝑧𝑧 < (𝑥 + 1)) ↔ (𝑥𝑥𝑥 < (𝑥 + 1))))
9089elrab 3363 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ↔ (𝑥 ∈ ℝ ∧ (𝑥𝑥𝑥 < (𝑥 + 1))))
9186, 90sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))})
92 nfv 1843 . . . . . . . . . . . . . . . . . . 19 𝑧(𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞))
93 nfrab1 3122 . . . . . . . . . . . . . . . . . . 19 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))}
94 nfcv 2764 . . . . . . . . . . . . . . . . . . 19 𝑧(𝑎(,)+∞)
95 rabid 3116 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))))
96 simprl 794 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ ℝ)
97 simpll 790 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 ∈ ℝ*)
9883adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥 ∈ ℝ)
9998rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥 ∈ ℝ*)
10096rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ ℝ*)
101 elioopnf 12267 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℝ* → (𝑥 ∈ (𝑎(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑎 < 𝑥)))
102101simplbda 654 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑎 < 𝑥)
103102adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 < 𝑥)
104 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))) → 𝑥𝑧)
105104adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥𝑧)
10697, 99, 100, 103, 105xrltletrd 11992 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 < 𝑧)
107 elioopnf 12267 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℝ* → (𝑧 ∈ (𝑎(,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑎 < 𝑧)))
108107biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ℝ* → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
109108adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
110109adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
11196, 106, 110mp2and 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ (𝑎(,)+∞))
112111ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))) → 𝑧 ∈ (𝑎(,)+∞)))
11395, 112syl5bi 232 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → 𝑧 ∈ (𝑎(,)+∞)))
11492, 93, 94, 113ssrd 3608 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞))
11591, 114jca 554 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))
116 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = +∞ → (𝑎(,)𝑏) = (𝑎(,)+∞))
117116eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑏 = +∞ → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)+∞)))
118117anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) ↔ (𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞))))
119116sseq2d 3633 . . . . . . . . . . . . . . . . . . 19 (𝑏 = +∞ → ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))
120119anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑏 = +∞ → ((𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞))))
121118, 120imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑏 = +∞ → (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))) ↔ ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))))
122115, 121mpbiri 248 . . . . . . . . . . . . . . . 16 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))))
123122impl 650 . . . . . . . . . . . . . . 15 (((𝑏 = +∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
124123ancom1s 847 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
125 eleq2 2690 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → (𝑥𝑖𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))}))
126 sseq1 3626 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → (𝑖 ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
127125, 126anbi12d 747 . . . . . . . . . . . . . . 15 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → ((𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))))
128127rspcev 3309 . . . . . . . . . . . . . 14 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼 ∧ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
12981, 124, 128syl2anc 693 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
130129ancom1s 847 . . . . . . . . . . . 12 (((𝑏 = +∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
131130expl 648 . . . . . . . . . . 11 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
1327adantl 482 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
133 oveq2 6658 . . . . . . . . . . . . . . . . . . 19 (𝑏 = -∞ → (𝑎(,)𝑏) = (𝑎(,)-∞))
134133eleq2d 2687 . . . . . . . . . . . . . . . . . 18 (𝑏 = -∞ → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)-∞)))
135134adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑏 = -∞) → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)-∞)))
136135pm5.32i 669 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) ↔ ((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)-∞)))
137 nltmnf 11963 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
138137intnand 962 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ¬ (𝑎 < 𝑥𝑥 < -∞))
139 eliooord 12233 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)-∞) → (𝑎 < 𝑥𝑥 < -∞))
140138, 139nsyl 135 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 ∈ (𝑎(,)-∞))
141140pm2.21d 118 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑥 ∈ (𝑎(,)-∞) → ((𝑎 ∈ ℝ*𝑏 = -∞) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))))
142141impd 447 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥 ∈ (𝑎(,)-∞) ∧ (𝑎 ∈ ℝ*𝑏 = -∞)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
143142ancomsd 470 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)-∞)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
144136, 143syl5bi 232 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
14520, 144syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
146132, 145mpcom 38 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
147146ancom1s 847 . . . . . . . . . . . 12 (((𝑏 = -∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
148147expl 648 . . . . . . . . . . 11 (𝑏 = -∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
14976, 131, 1483jaoi 1391 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∨ 𝑏 = +∞ ∨ 𝑏 = -∞) → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
1505, 149sylbi 207 . . . . . . . . 9 (𝑏 ∈ ℝ* → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
151150expdimp 453 . . . . . . . 8 ((𝑏 ∈ ℝ*𝑎 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
152151ancoms 469 . . . . . . 7 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
153 eleq2 2690 . . . . . . . 8 (𝑜 = (𝑎(,)𝑏) → (𝑥𝑜𝑥 ∈ (𝑎(,)𝑏)))
154 sseq2 3627 . . . . . . . . . 10 (𝑜 = (𝑎(,)𝑏) → (𝑖𝑜𝑖 ⊆ (𝑎(,)𝑏)))
155154anbi2d 740 . . . . . . . . 9 (𝑜 = (𝑎(,)𝑏) → ((𝑥𝑖𝑖𝑜) ↔ (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
156155rexbidv 3052 . . . . . . . 8 (𝑜 = (𝑎(,)𝑏) → (∃𝑖𝐼 (𝑥𝑖𝑖𝑜) ↔ ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
157153, 156imbi12d 334 . . . . . . 7 (𝑜 = (𝑎(,)𝑏) → ((𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)) ↔ (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))))
158152, 157syl5ibrcom 237 . . . . . 6 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑜 = (𝑎(,)𝑏) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))))
159158rexlimivv 3036 . . . . 5 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
1604, 159sylbi 207 . . . 4 (𝑜 ∈ ran (,) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
161160rgen 2922 . . 3 𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))
162161rgenw 2924 . 2 𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))
163 iooex 12198 . . . . 5 (,) ∈ V
164163rnex 7100 . . . 4 ran (,) ∈ V
165 unirnioo 12273 . . . . 5 ℝ = ran (,)
1669icoreunrn 33207 . . . . 5 ℝ = 𝐼
167165, 166eqtr3i 2646 . . . 4 ran (,) = 𝐼
168 tgss2 20791 . . . 4 ((ran (,) ∈ V ∧ ran (,) = 𝐼) → ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))))
169164, 167, 168mp2an 708 . . 3 ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
170165raleqi 3142 . . 3 (∀𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
171169, 170bitr4i 267 . 2 ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
172162, 171mpbir 221 1 (topGen‘ran (,)) ⊆ (topGen‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  [,)cico 12177  topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioo 12179  df-ico 12181  df-topgen 16104
This theorem is referenced by:  relowlpssretop  33212
  Copyright terms: Public domain W3C validator