Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem52 Structured version   Visualization version   GIF version

Theorem stoweidlem52 40269
Description: There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem52.1 𝑡𝑈
stoweidlem52.2 𝑡𝜑
stoweidlem52.3 𝑡𝑃
stoweidlem52.4 𝐾 = (topGen‘ran (,))
stoweidlem52.5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem52.7 𝑇 = 𝐽
stoweidlem52.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem52.9 (𝜑𝐴𝐶)
stoweidlem52.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.12 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem52.13 (𝜑𝐷 ∈ ℝ+)
stoweidlem52.14 (𝜑𝐷 < 1)
stoweidlem52.15 (𝜑𝑈𝐽)
stoweidlem52.16 (𝜑𝑍𝑈)
stoweidlem52.17 (𝜑𝑃𝐴)
stoweidlem52.18 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem52.19 (𝜑 → (𝑃𝑍) = 0)
stoweidlem52.20 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem52 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑎,𝑡   𝐴,𝑎,𝑡   𝐷,𝑎,𝑡   𝑇,𝑎,𝑡   𝑈,𝑎   𝑉,𝑎,𝑒   𝜑,𝑎,𝑒   𝑒,𝑓,𝑔,𝑡   𝑣,𝑒,𝑥,𝑡   𝐴,𝑓,𝑔   𝐷,𝑓,𝑔   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑉,𝑔   𝜑,𝑓,𝑔   𝑡,𝑍,𝑣   𝑣,𝐴   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑉,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐴(𝑒)   𝐶(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐷(𝑥,𝑣,𝑒)   𝑃(𝑥,𝑣,𝑡,𝑒,𝑎)   𝑇(𝑒)   𝑈(𝑡,𝑒)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐾(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝑉(𝑡)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎)

Proof of Theorem stoweidlem52
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3 𝑡(𝐷 / 2)
2 stoweidlem52.3 . . 3 𝑡𝑃
3 stoweidlem52.2 . . 3 𝑡𝜑
4 stoweidlem52.4 . . 3 𝐾 = (topGen‘ran (,))
5 stoweidlem52.7 . . 3 𝑇 = 𝐽
6 stoweidlem52.5 . . 3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
7 stoweidlem52.13 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
87rpred 11872 . . . . 5 (𝜑𝐷 ∈ ℝ)
98rehalfcld 11279 . . . 4 (𝜑 → (𝐷 / 2) ∈ ℝ)
109rexrd 10089 . . 3 (𝜑 → (𝐷 / 2) ∈ ℝ*)
11 stoweidlem52.9 . . . . 5 (𝜑𝐴𝐶)
12 stoweidlem52.8 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
1311, 12syl6sseq 3651 . . . 4 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem52.17 . . . 4 (𝜑𝑃𝐴)
1513, 14sseldd 3604 . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
161, 2, 3, 4, 5, 6, 10, 15rfcnpre2 39190 . 2 (𝜑𝑉𝐽)
17 stoweidlem52.15 . . . . . . . 8 (𝜑𝑈𝐽)
18 elssuni 4467 . . . . . . . 8 (𝑈𝐽𝑈 𝐽)
1917, 18syl 17 . . . . . . 7 (𝜑𝑈 𝐽)
2019, 5syl6sseqr 3652 . . . . . 6 (𝜑𝑈𝑇)
21 stoweidlem52.16 . . . . . 6 (𝜑𝑍𝑈)
2220, 21sseldd 3604 . . . . 5 (𝜑𝑍𝑇)
23 stoweidlem52.19 . . . . . 6 (𝜑 → (𝑃𝑍) = 0)
24 2re 11090 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
267rpgt0d 11875 . . . . . . 7 (𝜑 → 0 < 𝐷)
27 2pos 11112 . . . . . . . 8 0 < 2
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
298, 25, 26, 28divgt0d 10959 . . . . . 6 (𝜑 → 0 < (𝐷 / 2))
3023, 29eqbrtrd 4675 . . . . 5 (𝜑 → (𝑃𝑍) < (𝐷 / 2))
31 nfcv 2764 . . . . . 6 𝑡𝑍
32 nfcv 2764 . . . . . 6 𝑡𝑇
332, 31nffv 6198 . . . . . . 7 𝑡(𝑃𝑍)
34 nfcv 2764 . . . . . . 7 𝑡 <
3533, 34, 1nfbr 4699 . . . . . 6 𝑡(𝑃𝑍) < (𝐷 / 2)
36 fveq2 6191 . . . . . . 7 (𝑡 = 𝑍 → (𝑃𝑡) = (𝑃𝑍))
3736breq1d 4663 . . . . . 6 (𝑡 = 𝑍 → ((𝑃𝑡) < (𝐷 / 2) ↔ (𝑃𝑍) < (𝐷 / 2)))
3831, 32, 35, 37elrabf 3360 . . . . 5 (𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ↔ (𝑍𝑇 ∧ (𝑃𝑍) < (𝐷 / 2)))
3922, 30, 38sylanbrc 698 . . . 4 (𝜑𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)})
4039, 6syl6eleqr 2712 . . 3 (𝜑𝑍𝑉)
41 nfrab1 3122 . . . . 5 𝑡{𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
426, 41nfcxfr 2762 . . . 4 𝑡𝑉
43 stoweidlem52.1 . . . 4 𝑡𝑈
4411, 14sseldd 3604 . . . . . . . . . . 11 (𝜑𝑃𝐶)
454, 5, 12, 44fcnre 39184 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
4645adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑃:𝑇⟶ℝ)
476rabeq2i 3197 . . . . . . . . . . . 12 (𝑡𝑉 ↔ (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4847biimpi 206 . . . . . . . . . . 11 (𝑡𝑉 → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4948adantl 482 . . . . . . . . . 10 ((𝜑𝑡𝑉) → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
5049simpld 475 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑡𝑇)
5146, 50ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℝ)
529adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) ∈ ℝ)
538adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐷 ∈ ℝ)
5449simprd 479 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) < (𝐷 / 2))
55 halfpos 11262 . . . . . . . . . . 11 (𝐷 ∈ ℝ → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
568, 55syl 17 . . . . . . . . . 10 (𝜑 → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
5726, 56mpbid 222 . . . . . . . . 9 (𝜑 → (𝐷 / 2) < 𝐷)
5857adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) < 𝐷)
5951, 52, 53, 54, 58lttrd 10198 . . . . . . 7 ((𝜑𝑡𝑉) → (𝑃𝑡) < 𝐷)
6059adantr 481 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) < 𝐷)
618ad2antrr 762 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ∈ ℝ)
6251adantr 481 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) ∈ ℝ)
63 stoweidlem52.20 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6463ad2antrr 762 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6550anim1i 592 . . . . . . . . 9 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑡𝑇 ∧ ¬ 𝑡𝑈))
66 eldif 3584 . . . . . . . . 9 (𝑡 ∈ (𝑇𝑈) ↔ (𝑡𝑇 ∧ ¬ 𝑡𝑈))
6765, 66sylibr 224 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝑡 ∈ (𝑇𝑈))
68 rsp 2929 . . . . . . . 8 (∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡) → (𝑡 ∈ (𝑇𝑈) → 𝐷 ≤ (𝑃𝑡)))
6964, 67, 68sylc 65 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ≤ (𝑃𝑡))
7061, 62, 69lensymd 10188 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ¬ (𝑃𝑡) < 𝐷)
7160, 70condan 835 . . . . 5 ((𝜑𝑡𝑉) → 𝑡𝑈)
7271ex 450 . . . 4 (𝜑 → (𝑡𝑉𝑡𝑈))
733, 42, 43, 72ssrd 3608 . . 3 (𝜑𝑉𝑈)
74 nfv 1843 . . . . . . . . 9 𝑡 𝑒 ∈ ℝ+
753, 74nfan 1828 . . . . . . . 8 𝑡(𝜑𝑒 ∈ ℝ+)
76 nfv 1843 . . . . . . . 8 𝑡 𝑦𝐴
7775, 76nfan 1828 . . . . . . 7 𝑡((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴)
78 nfra1 2941 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)
79 nfra1 2941 . . . . . . . 8 𝑡𝑡𝑉 (1 − 𝑒) < (𝑦𝑡)
80 nfra1 2941 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒
8178, 79, 80nf3an 1831 . . . . . . 7 𝑡(∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
8277, 81nfan 1828 . . . . . 6 𝑡(((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
83 eqid 2622 . . . . . 6 (𝑡𝑇 ↦ (1 − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
84 eqid 2622 . . . . . 6 (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ 1)
85 ssrab2 3687 . . . . . . 7 {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ⊆ 𝑇
866, 85eqsstri 3635 . . . . . 6 𝑉𝑇
87 simplr 792 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦𝐴)
88 simplll 798 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝜑)
8911sselda 3603 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦𝐶)
904, 5, 12, 89fcnre 39184 . . . . . . 7 ((𝜑𝑦𝐴) → 𝑦:𝑇⟶ℝ)
9188, 87, 90syl2anc 693 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦:𝑇⟶ℝ)
9211sselda 3603 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
934, 5, 12, 92fcnre 39184 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
9488, 93sylan 488 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
95 stoweidlem52.10 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9688, 95syl3an1 1359 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
97 stoweidlem52.11 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9888, 97syl3an1 1359 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
99 stoweidlem52.12 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
10088, 99sylan 488 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
101 simpllr 799 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑒 ∈ ℝ+)
102 simpr1 1067 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
103 simpr2 1068 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡))
104 simpr3 1069 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
10582, 83, 84, 86, 87, 91, 94, 96, 98, 100, 101, 102, 103, 104stoweidlem41 40258 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
1067adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 ∈ ℝ+)
107 stoweidlem52.14 . . . . . . 7 (𝜑𝐷 < 1)
108107adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 < 1)
10914adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃𝐴)
11045adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃:𝑇⟶ℝ)
111 stoweidlem52.18 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
112111adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
11363adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
11493adantlr 751 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
115953adant1r 1319 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116973adant1r 1319 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
11799adantlr 751 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
118 simpr 477 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1192, 75, 6, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118stoweidlem49 40266 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
120105, 119r19.29a 3078 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
121120ralrimiva 2966 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
12240, 73, 121jca31 557 . 2 (𝜑 → ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
123 eleq2 2690 . . . . 5 (𝑣 = 𝑉 → (𝑍𝑣𝑍𝑉))
124 sseq1 3626 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
125123, 124anbi12d 747 . . . 4 (𝑣 = 𝑉 → ((𝑍𝑣𝑣𝑈) ↔ (𝑍𝑉𝑉𝑈)))
126 nfcv 2764 . . . . . . . 8 𝑡𝑣
127126, 42raleqf 3134 . . . . . . 7 (𝑣 = 𝑉 → (∀𝑡𝑣 (𝑥𝑡) < 𝑒 ↔ ∀𝑡𝑉 (𝑥𝑡) < 𝑒))
1281273anbi2d 1404 . . . . . 6 (𝑣 = 𝑉 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
129128rexbidv 3052 . . . . 5 (𝑣 = 𝑉 → (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
130129ralbidv 2986 . . . 4 (𝑣 = 𝑉 → (∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
131125, 130anbi12d 747 . . 3 (𝑣 = 𝑉 → (((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))) ↔ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
132131rspcev 3309 . 2 ((𝑉𝐽 ∧ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
13316, 122, 132syl2anc 693 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  topGenctg 16098   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  stoweidlem56  40273
  Copyright terms: Public domain W3C validator