![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suctrALT3 | Structured version Visualization version GIF version |
Description: The successor of a transitive class is transitive. suctrALT3 39160 is the completed proof in conventional notation of the Virtual Deduction proof http://us.metamath.org/other/completeusersproof/suctralt3vd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 38785 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 38782). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 4754) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
suctrALT3 | ⊢ (Tr 𝐴 → Tr suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 5802 | . . . . . . . . 9 ⊢ 𝐴 ⊆ suc 𝐴 | |
2 | id 22 | . . . . . . . . . 10 ⊢ (Tr 𝐴 → Tr 𝐴) | |
3 | id 22 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) | |
4 | 3 | simpld 475 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝑦) |
5 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴) | |
6 | 2, 4, 5 | trelded 38781 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
7 | 1, 6 | sseldi 3601 | . . . . . . . 8 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ suc 𝐴) |
8 | 7 | 3expia 1267 | . . . . . . 7 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴)) |
9 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
10 | eleq2 2690 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
11 | 10 | biimpac 503 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴) |
12 | 4, 9, 11 | syl2an 494 | . . . . . . . . 9 ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴) |
13 | 1, 12 | sseldi 3601 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴) |
14 | 13 | ex 450 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴)) |
15 | 3 | simprd 479 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴) |
16 | elsuci 5791 | . . . . . . . 8 ⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
18 | 8, 14, 17 | jaoded 38782 | . . . . . 6 ⊢ (((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴) |
19 | 18 | un2122 39017 | . . . . 5 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴) |
20 | 19 | ex 450 | . . . 4 ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
21 | 20 | alrimivv 1856 | . . 3 ⊢ (Tr 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
22 | dftr2 4754 | . . . 4 ⊢ (Tr suc 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | |
23 | 22 | biimpri 218 | . . 3 ⊢ (∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴) |
24 | 21, 23 | syl 17 | . 2 ⊢ (Tr 𝐴 → Tr suc 𝐴) |
25 | 24 | idiALT 38683 | 1 ⊢ (Tr 𝐴 → Tr suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 ∀wal 1481 = wceq 1483 ∈ wcel 1990 Tr wtr 4752 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-uni 4437 df-tr 4753 df-suc 5729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |