Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT3 Structured version   Visualization version   Unicode version

Theorem suctrALT3 39160
Description: The successor of a transitive class is transitive. suctrALT3 39160 is the completed proof in conventional notation of the Virtual Deduction proof http://us.metamath.org/other/completeusersproof/suctralt3vd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 38785 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 38782). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 4754) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT3  |-  ( Tr  A  ->  Tr  suc  A
)

Proof of Theorem suctrALT3
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 5802 . . . . . . . . 9  |-  A  C_  suc  A
2 id 22 . . . . . . . . . 10  |-  ( Tr  A  ->  Tr  A
)
3 id 22 . . . . . . . . . . 11  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( z  e.  y  /\  y  e. 
suc  A ) )
43simpld 475 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  y )
5 id 22 . . . . . . . . . 10  |-  ( y  e.  A  ->  y  e.  A )
62, 4, 5trelded 38781 . . . . . . . . 9  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  y  e.  A
)  ->  z  e.  A )
71, 6sseldi 3601 . . . . . . . 8  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  y  e.  A
)  ->  z  e.  suc  A )
873expia 1267 . . . . . . 7  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A ) )  ->  ( y  e.  A  ->  z  e. 
suc  A ) )
9 id 22 . . . . . . . . . 10  |-  ( y  =  A  ->  y  =  A )
10 eleq2 2690 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
z  e.  y  <->  z  e.  A ) )
1110biimpac 503 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  y  =  A )  ->  z  e.  A )
124, 9, 11syl2an 494 . . . . . . . . 9  |-  ( ( ( z  e.  y  /\  y  e.  suc  A )  /\  y  =  A )  ->  z  e.  A )
131, 12sseldi 3601 . . . . . . . 8  |-  ( ( ( z  e.  y  /\  y  e.  suc  A )  /\  y  =  A )  ->  z  e.  suc  A )
1413ex 450 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( y  =  A  ->  z  e.  suc  A ) )
153simprd 479 . . . . . . . 8  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  y  e.  suc  A )
16 elsuci 5791 . . . . . . . 8  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
1715, 16syl 17 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( y  e.  A  \/  y  =  A ) )
188, 14, 17jaoded 38782 . . . . . 6  |-  ( ( ( Tr  A  /\  ( z  e.  y  /\  y  e.  suc  A ) )  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  ( z  e.  y  /\  y  e. 
suc  A ) )  ->  z  e.  suc  A )
1918un2122 39017 . . . . 5  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A ) )  ->  z  e.  suc  A )
2019ex 450 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A ) )
2120alrimivv 1856 . . 3  |-  ( Tr  A  ->  A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  -> 
z  e.  suc  A
) )
22 dftr2 4754 . . . 4  |-  ( Tr 
suc  A  <->  A. z A. y
( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) )
2322biimpri 218 . . 3  |-  ( A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A )  ->  Tr  suc  A
)
2421, 23syl 17 . 2  |-  ( Tr  A  ->  Tr  suc  A
)
2524idiALT 38683 1  |-  ( Tr  A  ->  Tr  suc  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   Tr wtr 4752   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-uni 4437  df-tr 4753  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator