MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5eleq Structured version   Visualization version   GIF version

Theorem syl5eleq 2707
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eleq.1 𝐴𝐵
syl5eleq.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
syl5eleq (𝜑𝐴𝐶)

Proof of Theorem syl5eleq
StepHypRef Expression
1 syl5eleq.1 . . 3 𝐴𝐵
21a1i 11 . 2 (𝜑𝐴𝐵)
3 syl5eleq.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2703 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618
This theorem is referenced by:  syl5eleqr  2708  opth1  4944  opth  4945  eqelsuc  5806  tfrlem11  7484  oalimcl  7640  omlimcl  7658  frgp0  18173  txdis  21435  ordtconnlem1  29970  rankeq1o  32278
  Copyright terms: Public domain W3C validator