![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5eleq | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eleq.1 | ⊢ 𝐴 ∈ 𝐵 |
syl5eleq.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
syl5eleq | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eleq.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3 | syl5eleq.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eleqtrd 2703 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: syl5eleqr 2708 opth1 4944 opth 4945 eqelsuc 5806 tfrlem11 7484 oalimcl 7640 omlimcl 7658 frgp0 18173 txdis 21435 ordtconnlem1 29970 rankeq1o 32278 |
Copyright terms: Public domain | W3C validator |