MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 18173
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2622 . . 3 (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 18171 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
5 2on 7568 . . . . 5 2𝑜 ∈ On
6 xpexg 6960 . . . . 5 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
75, 6mpan2 707 . . . 4 (𝐼𝑉 → (𝐼 × 2𝑜) ∈ V)
8 eqid 2622 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜)))
92, 8frmdbas 17389 . . . 4 ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
1110eqcomd 2628 . 2 (𝐼𝑉 → Word (𝐼 × 2𝑜) = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
12 eqidd 2623 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2𝑜))) = (+g‘(freeMnd‘(𝐼 × 2𝑜))))
13 eqid 2622 . . . 4 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
1413, 3efger 18131 . . 3 Er ( I ‘Word (𝐼 × 2𝑜))
15 wrdexg 13315 . . . . 5 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
16 fvi 6255 . . . . 5 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
18 ereq2 7750 . . . 4 (( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜) → ( Er ( I ‘Word (𝐼 × 2𝑜)) ↔ Er Word (𝐼 × 2𝑜)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2𝑜)) ↔ Er Word (𝐼 × 2𝑜)))
2014, 19mpbii 223 . 2 (𝐼𝑉 Er Word (𝐼 × 2𝑜))
21 fvexd 6203 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V)
22 eqid 2622 . . . 4 (+g‘(freeMnd‘(𝐼 × 2𝑜))) = (+g‘(freeMnd‘(𝐼 × 2𝑜)))
231, 2, 3, 22frgpcpbl 18172 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑑)))
252frmdmnd 17396 . . . . . 6 ((𝐼 × 2𝑜) ∈ V → (freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd)
27263ad2ant1 1082 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → (freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd)
28 simp2 1062 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
29113ad2ant1 1082 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → Word (𝐼 × 2𝑜) = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
3028, 29eleqtrd 2703 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
31 simp3 1063 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → 𝑦 ∈ Word (𝐼 × 2𝑜))
3231, 29eleqtrd 2703 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
338, 22mndcl 17301 . . . 4 (((freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
3427, 30, 32, 33syl3anc 1326 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
3534, 29eleqtrrd 2704 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦) ∈ Word (𝐼 × 2𝑜))
3620adantr 481 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → Er Word (𝐼 × 2𝑜))
3726adantr 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → (freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd)
38343adant3r3 1276 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
39 simpr3 1069 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → 𝑧 ∈ Word (𝐼 × 2𝑜))
4011adantr 481 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → Word (𝐼 × 2𝑜) = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
4139, 40eleqtrd 2703 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
428, 22mndcl 17301 . . . . . 6 (((freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
4337, 38, 41, 42syl3anc 1326 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
4443, 40eleqtrrd 2704 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) ∈ Word (𝐼 × 2𝑜))
4536, 44erref 7762 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧))
46303adant3r3 1276 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
47323adant3r3 1276 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
488, 22mndass 17302 . . . 4 (((freeMnd‘(𝐼 × 2𝑜)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))(𝑦(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1328 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))(𝑦(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧)))
5045, 49breqtrd 4679 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2𝑜) ∧ 𝑦 ∈ Word (𝐼 × 2𝑜) ∧ 𝑧 ∈ Word (𝐼 × 2𝑜))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑦)(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2𝑜)))(𝑦(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑧)))
51 wrd0 13330 . . 3 ∅ ∈ Word (𝐼 × 2𝑜)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2𝑜))
5351, 11syl5eleq 2707 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
5453adantr 481 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
5511eleq2d 2687 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2𝑜) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜)))))
5655biimpa 501 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
572, 8, 22frmdadd 17392 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜)))) → (∅(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 693 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (∅(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 13369 . . . . 5 (𝑥 ∈ Word (𝐼 × 2𝑜) → (∅ ++ 𝑥) = 𝑥)
6059adantl 482 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2656 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (∅(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) = 𝑥)
6220adantr 481 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → Er Word (𝐼 × 2𝑜))
63 simpr 477 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
6462, 63erref 7762 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → 𝑥 𝑥)
6561, 64eqbrtrd 4675 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (∅(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) 𝑥)
66 revcl 13510 . . . 4 (𝑥 ∈ Word (𝐼 × 2𝑜) → (reverse‘𝑥) ∈ Word (𝐼 × 2𝑜))
6766adantl 482 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (reverse‘𝑥) ∈ Word (𝐼 × 2𝑜))
68 eqid 2622 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6968efgmf 18126 . . . 4 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩):(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩):(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜))
71 wrdco 13577 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2𝑜) ∧ (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩):(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2𝑜))
7267, 70, 71syl2anc 693 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2𝑜))
7311adantr 481 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → Word (𝐼 × 2𝑜) = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
7472, 73eleqtrd 2703 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))))
752, 8, 22frmdadd 17392 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2𝑜)))) → (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 693 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2687 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↔ 𝑥 ∈ Word (𝐼 × 2𝑜)))
7877biimpar 502 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)))
79 eqid 2622 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 18141 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)) → (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 4675 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2𝑜)) → (((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2𝑜)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 17533 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  c0 3915  cop 4183  cotp 4185   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccom 5118  Oncon0 5723  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554   Er wer 7739  [cec 7740  0cc0 9936  ...cfz 12326  #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296  reversecreverse 13297  ⟨“cs2 13586  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  freeMndcfrmd 17384  Grpcgrp 17422   ~FG cefg 18119  freeGrpcfrgp 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-frmd 17386  df-grp 17425  df-efg 18122  df-frgp 18123
This theorem is referenced by:  frgpgrp  18175  frgpinv  18177  frgpmhm  18178
  Copyright terms: Public domain W3C validator