| Step | Hyp | Ref
| Expression |
| 1 | | 1n0 7575 |
. . . . . . 7
⊢
1𝑜 ≠ ∅ |
| 2 | | neeq1 2856 |
. . . . . . 7
⊢
((rank‘𝐴) =
1𝑜 → ((rank‘𝐴) ≠ ∅ ↔ 1𝑜
≠ ∅)) |
| 3 | 1, 2 | mpbiri 248 |
. . . . . 6
⊢
((rank‘𝐴) =
1𝑜 → (rank‘𝐴) ≠ ∅) |
| 4 | 3 | neneqd 2799 |
. . . . 5
⊢
((rank‘𝐴) =
1𝑜 → ¬ (rank‘𝐴) = ∅) |
| 5 | | fvprc 6185 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
(rank‘𝐴) =
∅) |
| 6 | 4, 5 | nsyl2 142 |
. . . 4
⊢
((rank‘𝐴) =
1𝑜 → 𝐴 ∈ V) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) |
| 8 | 7 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((rank‘𝑥) = 1𝑜 ↔
(rank‘𝐴) =
1𝑜)) |
| 9 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = 1𝑜 ↔ 𝐴 =
1𝑜)) |
| 10 | 8, 9 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((rank‘𝑥) = 1𝑜 → 𝑥 = 1𝑜) ↔
((rank‘𝐴) =
1𝑜 → 𝐴 = 1𝑜))) |
| 11 | | neeq1 2856 |
. . . . . . . 8
⊢
((rank‘𝑥) =
1𝑜 → ((rank‘𝑥) ≠ ∅ ↔ 1𝑜
≠ ∅)) |
| 12 | 1, 11 | mpbiri 248 |
. . . . . . 7
⊢
((rank‘𝑥) =
1𝑜 → (rank‘𝑥) ≠ ∅) |
| 13 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 14 | 13 | rankeq0 8724 |
. . . . . . . 8
⊢ (𝑥 = ∅ ↔
(rank‘𝑥) =
∅) |
| 15 | 14 | necon3bii 2846 |
. . . . . . 7
⊢ (𝑥 ≠ ∅ ↔
(rank‘𝑥) ≠
∅) |
| 16 | 12, 15 | sylibr 224 |
. . . . . 6
⊢
((rank‘𝑥) =
1𝑜 → 𝑥 ≠ ∅) |
| 17 | 13 | rankval 8679 |
. . . . . . . 8
⊢
(rank‘𝑥) =
∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} |
| 18 | 17 | eqeq1i 2627 |
. . . . . . 7
⊢
((rank‘𝑥) =
1𝑜 ↔ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} =
1𝑜) |
| 19 | | ssrab2 3687 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ⊆ On |
| 20 | | elirr 8505 |
. . . . . . . . . . . . . 14
⊢ ¬
1𝑜 ∈ 1𝑜 |
| 21 | | df1o2 7572 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 = {∅} |
| 22 | | p0ex 4853 |
. . . . . . . . . . . . . . . 16
⊢ {∅}
∈ V |
| 23 | 21, 22 | eqeltri 2697 |
. . . . . . . . . . . . . . 15
⊢
1𝑜 ∈ V |
| 24 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (V =
1𝑜 → V = 1𝑜) |
| 25 | 23, 24 | syl5eleq 2707 |
. . . . . . . . . . . . . 14
⊢ (V =
1𝑜 → 1𝑜 ∈
1𝑜) |
| 26 | 20, 25 | mto 188 |
. . . . . . . . . . . . 13
⊢ ¬ V
= 1𝑜 |
| 27 | | inteq 4478 |
. . . . . . . . . . . . . . 15
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = ∅ → ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = ∩
∅) |
| 28 | | int0 4490 |
. . . . . . . . . . . . . . 15
⊢ ∩ ∅ = V |
| 29 | 27, 28 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = ∅ → ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = V) |
| 30 | 29 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = ∅ → (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 ↔ V =
1𝑜)) |
| 31 | 26, 30 | mtbiri 317 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = ∅ → ¬ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜) |
| 32 | 31 | necon2ai 2823 |
. . . . . . . . . . 11
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 → {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅) |
| 33 | | onint 6995 |
. . . . . . . . . . 11
⊢ (({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ≠ ∅) →
∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
| 34 | 19, 32, 33 | sylancr 695 |
. . . . . . . . . 10
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 → ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)}) |
| 35 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 → (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ↔
1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)})) |
| 36 | 34, 35 | mpbid 222 |
. . . . . . . . 9
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 →
1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)}) |
| 37 | | suceq 5790 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1𝑜 →
suc 𝑦 = suc
1𝑜) |
| 38 | 37 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1𝑜 →
(𝑅1‘suc 𝑦) = (𝑅1‘suc
1𝑜)) |
| 39 | | df-1o 7560 |
. . . . . . . . . . . . . . . . 17
⊢
1𝑜 = suc ∅ |
| 40 | 39 | fveq2i 6194 |
. . . . . . . . . . . . . . . 16
⊢
(𝑅1‘1𝑜) =
(𝑅1‘suc ∅) |
| 41 | | 0elon 5778 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ On |
| 42 | | r1suc 8633 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ On → (𝑅1‘suc ∅) = 𝒫
(𝑅1‘∅)) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(𝑅1‘suc ∅) = 𝒫
(𝑅1‘∅) |
| 44 | | r10 8631 |
. . . . . . . . . . . . . . . . 17
⊢
(𝑅1‘∅) = ∅ |
| 45 | 44 | pweqi 4162 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
(𝑅1‘∅) = 𝒫 ∅ |
| 46 | 40, 43, 45 | 3eqtri 2648 |
. . . . . . . . . . . . . . 15
⊢
(𝑅1‘1𝑜) = 𝒫
∅ |
| 47 | 46 | pweqi 4162 |
. . . . . . . . . . . . . 14
⊢ 𝒫
(𝑅1‘1𝑜) = 𝒫 𝒫
∅ |
| 48 | | pw0 4343 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
∅ = {∅} |
| 49 | 48 | pweqi 4162 |
. . . . . . . . . . . . . 14
⊢ 𝒫
𝒫 ∅ = 𝒫 {∅} |
| 50 | | pwpw0 4344 |
. . . . . . . . . . . . . 14
⊢ 𝒫
{∅} = {∅, {∅}} |
| 51 | 47, 49, 50 | 3eqtrri 2649 |
. . . . . . . . . . . . 13
⊢ {∅,
{∅}} = 𝒫
(𝑅1‘1𝑜) |
| 52 | | 1on 7567 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ On |
| 53 | | r1suc 8633 |
. . . . . . . . . . . . . 14
⊢
(1𝑜 ∈ On → (𝑅1‘suc
1𝑜) = 𝒫
(𝑅1‘1𝑜)) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(𝑅1‘suc 1𝑜) = 𝒫
(𝑅1‘1𝑜) |
| 55 | 51, 54 | eqtr4i 2647 |
. . . . . . . . . . . 12
⊢ {∅,
{∅}} = (𝑅1‘suc
1𝑜) |
| 56 | 38, 55 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (𝑦 = 1𝑜 →
(𝑅1‘suc 𝑦) = {∅, {∅}}) |
| 57 | 56 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝑦 = 1𝑜 →
(𝑥 ∈
(𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅,
{∅}})) |
| 58 | 57 | elrab 3363 |
. . . . . . . . 9
⊢
(1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ↔
(1𝑜 ∈ On ∧ 𝑥 ∈ {∅,
{∅}})) |
| 59 | 36, 58 | sylib 208 |
. . . . . . . 8
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 →
(1𝑜 ∈ On ∧ 𝑥 ∈ {∅,
{∅}})) |
| 60 | 13 | elpr 4198 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {∅, {∅}}
↔ (𝑥 = ∅ ∨
𝑥 =
{∅})) |
| 61 | | df-ne 2795 |
. . . . . . . . . . . 12
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
| 62 | | orel1 397 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅})) |
| 63 | 61, 62 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅})) |
| 64 | | eqeq2 2633 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {∅} →
(1𝑜 = 𝑥
↔ 1𝑜 = {∅})) |
| 65 | 21, 64 | mpbiri 248 |
. . . . . . . . . . . 12
⊢ (𝑥 = {∅} →
1𝑜 = 𝑥) |
| 66 | 65 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝑥 = {∅} → 𝑥 =
1𝑜) |
| 67 | 63, 66 | syl6com 37 |
. . . . . . . . . 10
⊢ ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 =
1𝑜)) |
| 68 | 60, 67 | sylbi 207 |
. . . . . . . . 9
⊢ (𝑥 ∈ {∅, {∅}}
→ (𝑥 ≠ ∅
→ 𝑥 =
1𝑜)) |
| 69 | 68 | adantl 482 |
. . . . . . . 8
⊢
((1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 =
1𝑜)) |
| 70 | 59, 69 | syl 17 |
. . . . . . 7
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} = 1𝑜 → (𝑥 ≠ ∅ → 𝑥 =
1𝑜)) |
| 71 | 18, 70 | sylbi 207 |
. . . . . 6
⊢
((rank‘𝑥) =
1𝑜 → (𝑥 ≠ ∅ → 𝑥 = 1𝑜)) |
| 72 | 16, 71 | mpd 15 |
. . . . 5
⊢
((rank‘𝑥) =
1𝑜 → 𝑥 = 1𝑜) |
| 73 | 10, 72 | vtoclg 3266 |
. . . 4
⊢ (𝐴 ∈ V →
((rank‘𝐴) =
1𝑜 → 𝐴 = 1𝑜)) |
| 74 | 6, 73 | mpcom 38 |
. . 3
⊢
((rank‘𝐴) =
1𝑜 → 𝐴 = 1𝑜) |
| 75 | | fveq2 6191 |
. . . 4
⊢ (𝐴 = 1𝑜 →
(rank‘𝐴) =
(rank‘1𝑜)) |
| 76 | | r111 8638 |
. . . . . . 7
⊢
𝑅1:On–1-1→V |
| 77 | | f1dm 6105 |
. . . . . . 7
⊢
(𝑅1:On–1-1→V → dom 𝑅1 =
On) |
| 78 | 76, 77 | ax-mp 5 |
. . . . . 6
⊢ dom
𝑅1 = On |
| 79 | 52, 78 | eleqtrri 2700 |
. . . . 5
⊢
1𝑜 ∈ dom 𝑅1 |
| 80 | | rankonid 8692 |
. . . . 5
⊢
(1𝑜 ∈ dom 𝑅1 ↔
(rank‘1𝑜) = 1𝑜) |
| 81 | 79, 80 | mpbi 220 |
. . . 4
⊢
(rank‘1𝑜) =
1𝑜 |
| 82 | 75, 81 | syl6eq 2672 |
. . 3
⊢ (𝐴 = 1𝑜 →
(rank‘𝐴) =
1𝑜) |
| 83 | 74, 82 | impbii 199 |
. 2
⊢
((rank‘𝐴) =
1𝑜 ↔ 𝐴 = 1𝑜) |
| 84 | 21 | eqeq2i 2634 |
. 2
⊢ (𝐴 = 1𝑜 ↔
𝐴 =
{∅}) |
| 85 | 83, 84 | bitri 264 |
1
⊢
((rank‘𝐴) =
1𝑜 ↔ 𝐴 = {∅}) |