Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   GIF version

Theorem rankeq1o 32278
Description: The only set with rank 1𝑜 is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o ((rank‘𝐴) = 1𝑜𝐴 = {∅})

Proof of Theorem rankeq1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7575 . . . . . . 7 1𝑜 ≠ ∅
2 neeq1 2856 . . . . . . 7 ((rank‘𝐴) = 1𝑜 → ((rank‘𝐴) ≠ ∅ ↔ 1𝑜 ≠ ∅))
31, 2mpbiri 248 . . . . . 6 ((rank‘𝐴) = 1𝑜 → (rank‘𝐴) ≠ ∅)
43neneqd 2799 . . . . 5 ((rank‘𝐴) = 1𝑜 → ¬ (rank‘𝐴) = ∅)
5 fvprc 6185 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
64, 5nsyl2 142 . . . 4 ((rank‘𝐴) = 1𝑜𝐴 ∈ V)
7 fveq2 6191 . . . . . . 7 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
87eqeq1d 2624 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝑥) = 1𝑜 ↔ (rank‘𝐴) = 1𝑜))
9 eqeq1 2626 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 1𝑜𝐴 = 1𝑜))
108, 9imbi12d 334 . . . . 5 (𝑥 = 𝐴 → (((rank‘𝑥) = 1𝑜𝑥 = 1𝑜) ↔ ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)))
11 neeq1 2856 . . . . . . . 8 ((rank‘𝑥) = 1𝑜 → ((rank‘𝑥) ≠ ∅ ↔ 1𝑜 ≠ ∅))
121, 11mpbiri 248 . . . . . . 7 ((rank‘𝑥) = 1𝑜 → (rank‘𝑥) ≠ ∅)
13 vex 3203 . . . . . . . . 9 𝑥 ∈ V
1413rankeq0 8724 . . . . . . . 8 (𝑥 = ∅ ↔ (rank‘𝑥) = ∅)
1514necon3bii 2846 . . . . . . 7 (𝑥 ≠ ∅ ↔ (rank‘𝑥) ≠ ∅)
1612, 15sylibr 224 . . . . . 6 ((rank‘𝑥) = 1𝑜𝑥 ≠ ∅)
1713rankval 8679 . . . . . . . 8 (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1817eqeq1i 2627 . . . . . . 7 ((rank‘𝑥) = 1𝑜 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜)
19 ssrab2 3687 . . . . . . . . . . 11 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
20 elirr 8505 . . . . . . . . . . . . . 14 ¬ 1𝑜 ∈ 1𝑜
21 df1o2 7572 . . . . . . . . . . . . . . . 16 1𝑜 = {∅}
22 p0ex 4853 . . . . . . . . . . . . . . . 16 {∅} ∈ V
2321, 22eqeltri 2697 . . . . . . . . . . . . . . 15 1𝑜 ∈ V
24 id 22 . . . . . . . . . . . . . . 15 (V = 1𝑜 → V = 1𝑜)
2523, 24syl5eleq 2707 . . . . . . . . . . . . . 14 (V = 1𝑜 → 1𝑜 ∈ 1𝑜)
2620, 25mto 188 . . . . . . . . . . . . 13 ¬ V = 1𝑜
27 inteq 4478 . . . . . . . . . . . . . . 15 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅)
28 int0 4490 . . . . . . . . . . . . . . 15 ∅ = V
2927, 28syl6eq 2672 . . . . . . . . . . . . . 14 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = V)
3029eqeq1d 2624 . . . . . . . . . . . . 13 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 ↔ V = 1𝑜))
3126, 30mtbiri 317 . . . . . . . . . . . 12 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ¬ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜)
3231necon2ai 2823 . . . . . . . . . . 11 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
33 onint 6995 . . . . . . . . . . 11 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
3419, 32, 33sylancr 695 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
35 eleq1 2689 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}))
3634, 35mpbid 222 . . . . . . . . 9 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → 1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
37 suceq 5790 . . . . . . . . . . . . 13 (𝑦 = 1𝑜 → suc 𝑦 = suc 1𝑜)
3837fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = 1𝑜 → (𝑅1‘suc 𝑦) = (𝑅1‘suc 1𝑜))
39 df-1o 7560 . . . . . . . . . . . . . . . . 17 1𝑜 = suc ∅
4039fveq2i 6194 . . . . . . . . . . . . . . . 16 (𝑅1‘1𝑜) = (𝑅1‘suc ∅)
41 0elon 5778 . . . . . . . . . . . . . . . . 17 ∅ ∈ On
42 r1suc 8633 . . . . . . . . . . . . . . . . 17 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
44 r10 8631 . . . . . . . . . . . . . . . . 17 (𝑅1‘∅) = ∅
4544pweqi 4162 . . . . . . . . . . . . . . . 16 𝒫 (𝑅1‘∅) = 𝒫 ∅
4640, 43, 453eqtri 2648 . . . . . . . . . . . . . . 15 (𝑅1‘1𝑜) = 𝒫 ∅
4746pweqi 4162 . . . . . . . . . . . . . 14 𝒫 (𝑅1‘1𝑜) = 𝒫 𝒫 ∅
48 pw0 4343 . . . . . . . . . . . . . . 15 𝒫 ∅ = {∅}
4948pweqi 4162 . . . . . . . . . . . . . 14 𝒫 𝒫 ∅ = 𝒫 {∅}
50 pwpw0 4344 . . . . . . . . . . . . . 14 𝒫 {∅} = {∅, {∅}}
5147, 49, 503eqtrri 2649 . . . . . . . . . . . . 13 {∅, {∅}} = 𝒫 (𝑅1‘1𝑜)
52 1on 7567 . . . . . . . . . . . . . 14 1𝑜 ∈ On
53 r1suc 8633 . . . . . . . . . . . . . 14 (1𝑜 ∈ On → (𝑅1‘suc 1𝑜) = 𝒫 (𝑅1‘1𝑜))
5452, 53ax-mp 5 . . . . . . . . . . . . 13 (𝑅1‘suc 1𝑜) = 𝒫 (𝑅1‘1𝑜)
5551, 54eqtr4i 2647 . . . . . . . . . . . 12 {∅, {∅}} = (𝑅1‘suc 1𝑜)
5638, 55syl6eqr 2674 . . . . . . . . . . 11 (𝑦 = 1𝑜 → (𝑅1‘suc 𝑦) = {∅, {∅}})
5756eleq2d 2687 . . . . . . . . . 10 (𝑦 = 1𝑜 → (𝑥 ∈ (𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅, {∅}}))
5857elrab 3363 . . . . . . . . 9 (1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ (1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5936, 58sylib 208 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → (1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
6013elpr 4198 . . . . . . . . . 10 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
61 df-ne 2795 . . . . . . . . . . . 12 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
62 orel1 397 . . . . . . . . . . . 12 𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
6361, 62sylbi 207 . . . . . . . . . . 11 (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
64 eqeq2 2633 . . . . . . . . . . . . 13 (𝑥 = {∅} → (1𝑜 = 𝑥 ↔ 1𝑜 = {∅}))
6521, 64mpbiri 248 . . . . . . . . . . . 12 (𝑥 = {∅} → 1𝑜 = 𝑥)
6665eqcomd 2628 . . . . . . . . . . 11 (𝑥 = {∅} → 𝑥 = 1𝑜)
6763, 66syl6com 37 . . . . . . . . . 10 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
6860, 67sylbi 207 . . . . . . . . 9 (𝑥 ∈ {∅, {∅}} → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
6968adantl 482 . . . . . . . 8 ((1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7059, 69syl 17 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7118, 70sylbi 207 . . . . . 6 ((rank‘𝑥) = 1𝑜 → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7216, 71mpd 15 . . . . 5 ((rank‘𝑥) = 1𝑜𝑥 = 1𝑜)
7310, 72vtoclg 3266 . . . 4 (𝐴 ∈ V → ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜))
746, 73mpcom 38 . . 3 ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)
75 fveq2 6191 . . . 4 (𝐴 = 1𝑜 → (rank‘𝐴) = (rank‘1𝑜))
76 r111 8638 . . . . . . 7 𝑅1:On–1-1→V
77 f1dm 6105 . . . . . . 7 (𝑅1:On–1-1→V → dom 𝑅1 = On)
7876, 77ax-mp 5 . . . . . 6 dom 𝑅1 = On
7952, 78eleqtrri 2700 . . . . 5 1𝑜 ∈ dom 𝑅1
80 rankonid 8692 . . . . 5 (1𝑜 ∈ dom 𝑅1 ↔ (rank‘1𝑜) = 1𝑜)
8179, 80mpbi 220 . . . 4 (rank‘1𝑜) = 1𝑜
8275, 81syl6eq 2672 . . 3 (𝐴 = 1𝑜 → (rank‘𝐴) = 1𝑜)
8374, 82impbii 199 . 2 ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)
8421eqeq2i 2634 . 2 (𝐴 = 1𝑜𝐴 = {∅})
8583, 84bitri 264 1 ((rank‘𝐴) = 1𝑜𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179   cint 4475  dom cdm 5114  Oncon0 5723  suc csuc 5725  1-1wf1 5885  cfv 5888  1𝑜c1o 7553  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627  df-rank 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator