MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Visualization version   GIF version

Theorem tfrlem11 7484
Description: Lemma for transfinite recursion. Compute the value of 𝐶. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem11 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 5791 . 2 (𝐵 ∈ suc dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)))
2 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
3 tfrlem.3 . . . . . . . . 9 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
42, 3tfrlem10 7483 . . . . . . . 8 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
5 fnfun 5988 . . . . . . . 8 (𝐶 Fn suc dom recs(𝐹) → Fun 𝐶)
64, 5syl 17 . . . . . . 7 (dom recs(𝐹) ∈ On → Fun 𝐶)
7 ssun1 3776 . . . . . . . . 9 recs(𝐹) ⊆ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
87, 3sseqtr4i 3638 . . . . . . . 8 recs(𝐹) ⊆ 𝐶
92tfrlem9 7481 . . . . . . . . 9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
10 funssfv 6209 . . . . . . . . . . . 12 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
11103expa 1265 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
1211adantrl 752 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
13 onelss 5766 . . . . . . . . . . . 12 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹)))
1413imp 445 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → 𝐵 ⊆ dom recs(𝐹))
15 fun2ssres 5931 . . . . . . . . . . . . 13 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
16153expa 1265 . . . . . . . . . . . 12 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
1716fveq2d 6195 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1814, 17sylan2 491 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1912, 18eqeq12d 2637 . . . . . . . . 9 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
209, 19syl5ibr 236 . . . . . . . 8 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
218, 20mpanl2 717 . . . . . . 7 ((Fun 𝐶 ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
226, 21sylan 488 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
2322exp32 631 . . . . 5 (dom recs(𝐹) ∈ On → (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))))
2423pm2.43i 52 . . . 4 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))))
2524pm2.43d 53 . . 3 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
26 opex 4932 . . . . . . . . 9 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ V
2726snid 4208 . . . . . . . 8 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨𝐵, (𝐹‘(𝐶𝐵))⟩}
28 opeq1 4402 . . . . . . . . . . 11 (𝐵 = dom recs(𝐹) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
2928adantl 482 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
30 eqimss 3657 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹))
318, 15mp3an2 1412 . . . . . . . . . . . . . 14 ((Fun 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
326, 30, 31syl2an 494 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
33 reseq2 5391 . . . . . . . . . . . . . . 15 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = (recs(𝐹) ↾ dom recs(𝐹)))
342tfrlem6 7478 . . . . . . . . . . . . . . . 16 Rel recs(𝐹)
35 resdm 5441 . . . . . . . . . . . . . . . 16 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
3733, 36syl6eq 2672 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3837adantl 482 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3932, 38eqtrd 2656 . . . . . . . . . . . 12 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = recs(𝐹))
4039fveq2d 6195 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘recs(𝐹)))
4140opeq2d 4409 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4229, 41eqtrd 2656 . . . . . . . . 9 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4342sneqd 4189 . . . . . . . 8 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → {⟨𝐵, (𝐹‘(𝐶𝐵))⟩} = {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4427, 43syl5eleq 2707 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
45 elun2 3781 . . . . . . 7 (⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4644, 45syl 17 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4746, 3syl6eleqr 2712 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶)
484adantr 481 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐶 Fn suc dom recs(𝐹))
49 simpr 477 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 = dom recs(𝐹))
50 sucidg 5803 . . . . . . . 8 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
5150adantr 481 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → dom recs(𝐹) ∈ suc dom recs(𝐹))
5249, 51eqeltrd 2701 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 ∈ suc dom recs(𝐹))
53 fnopfvb 6237 . . . . . 6 ((𝐶 Fn suc dom recs(𝐹) ∧ 𝐵 ∈ suc dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5448, 52, 53syl2anc 693 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5547, 54mpbird 247 . . . 4 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))
5655ex 450 . . 3 (dom recs(𝐹) ∈ On → (𝐵 = dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
5725, 56jaod 395 . 2 (dom recs(𝐹) ∈ On → ((𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
581, 57syl5 34 1 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  cun 3572  wss 3574  {csn 4177  cop 4183  dom cdm 5114  cres 5116  Rel wrel 5119  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem12  7485
  Copyright terms: Public domain W3C validator