MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlimcl Structured version   Visualization version   GIF version

Theorem omlimcl 7658
Description: The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omlimcl (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝐵))

Proof of Theorem omlimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 5788 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 omcl 7616 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
3 eloni 5733 . . . . 5 ((𝐴 ·𝑜 𝐵) ∈ On → Ord (𝐴 ·𝑜 𝐵))
42, 3syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·𝑜 𝐵))
51, 4sylan2 491 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴 ·𝑜 𝐵))
65adantr 481 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord (𝐴 ·𝑜 𝐵))
7 0ellim 5787 . . . . . . . 8 (Lim 𝐵 → ∅ ∈ 𝐵)
8 n0i 3920 . . . . . . . 8 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
97, 8syl 17 . . . . . . 7 (Lim 𝐵 → ¬ 𝐵 = ∅)
10 n0i 3920 . . . . . . 7 (∅ ∈ 𝐴 → ¬ 𝐴 = ∅)
119, 10anim12ci 591 . . . . . 6 ((Lim 𝐵 ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
1211adantll 750 . . . . 5 (((𝐵𝐶 ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
1312adantll 750 . . . 4 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
14 om00 7655 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
1514notbid 308 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·𝑜 𝐵) = ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅)))
16 ioran 511 . . . . . . 7 (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
1715, 16syl6bb 276 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·𝑜 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
181, 17sylan2 491 . . . . 5 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (¬ (𝐴 ·𝑜 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
1918adantr 481 . . . 4 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ (𝐴 ·𝑜 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
2013, 19mpbird 247 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·𝑜 𝐵) = ∅)
21 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
2221sucid 5804 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
23 omlim 7613 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
24 eqeq1 2626 . . . . . . . . . . . 12 ((𝐴 ·𝑜 𝐵) = suc 𝑦 → ((𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 = 𝑥𝐵 (𝐴 ·𝑜 𝑥)))
2524biimpac 503 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → suc 𝑦 = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
2623, 25sylan 488 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → suc 𝑦 = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
2722, 26syl5eleq 2707 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → 𝑦 𝑥𝐵 (𝐴 ·𝑜 𝑥))
28 eliun 4524 . . . . . . . . 9 (𝑦 𝑥𝐵 (𝐴 ·𝑜 𝑥) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴 ·𝑜 𝑥))
2927, 28sylib 208 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → ∃𝑥𝐵 𝑦 ∈ (𝐴 ·𝑜 𝑥))
3029adantlr 751 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → ∃𝑥𝐵 𝑦 ∈ (𝐴 ·𝑜 𝑥))
31 onelon 5748 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
321, 31sylan 488 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ On)
33 onnbtwn 5818 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
34 imnan 438 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
3533, 34sylibr 224 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥))
3635com12 32 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3736adantl 482 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3832, 37mpd 15 . . . . . . . . . . . . . 14 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
3938adantll 750 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
4039adantlr 751 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
4140adantr 481 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 ·𝑜 𝑥)) → ¬ 𝐵 ∈ suc 𝑥)
42 simpl 473 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝐵 ∈ On)
4342, 31jca 554 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑥𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On))
441, 43sylan 488 . . . . . . . . . . . . . . . 16 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On))
4544anim2i 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)))
4645anassrs 680 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑥𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)))
47 omcl 7616 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
48 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·𝑜 𝑥) ∈ On → Ord (𝐴 ·𝑜 𝑥))
49 ordsucelsuc 7022 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord (𝐴 ·𝑜 𝑥) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·𝑜 𝑥)))
5048, 49syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·𝑜 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·𝑜 𝑥)))
51 oa1suc 7611 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·𝑜 𝑥) ∈ On → ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) = suc (𝐴 ·𝑜 𝑥))
5251eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·𝑜 𝑥) ∈ On → (suc 𝑦 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ↔ suc 𝑦 ∈ suc (𝐴 ·𝑜 𝑥)))
5350, 52bitr4d 271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ·𝑜 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜)))
5447, 53syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜)))
5554adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜)))
56 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ On → Ord 𝐴)
57 ordgt0ge1 7577 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
5958adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
60 1on 7567 . . . . . . . . . . . . . . . . . . . . . . . . 25 1𝑜 ∈ On
61 oaword 7629 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1𝑜 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝑥) ∈ On) → (1𝑜𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
6260, 61mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ On ∧ (𝐴 ·𝑜 𝑥) ∈ On) → (1𝑜𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
6347, 62syldan 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (1𝑜𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
6459, 63bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
6564biimpa 501 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
66 omsuc 7606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
6766adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
6865, 67sseqtr4d 3642 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) ⊆ (𝐴 ·𝑜 suc 𝑥))
6968sseld 3602 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (suc 𝑦 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 1𝑜) → suc 𝑦 ∈ (𝐴 ·𝑜 suc 𝑥)))
7055, 69sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → suc 𝑦 ∈ (𝐴 ·𝑜 suc 𝑥)))
71 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·𝑜 𝐵) = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 ·𝑜 suc 𝑥)))
7271biimprd 238 . . . . . . . . . . . . . . . . . 18 ((𝐴 ·𝑜 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 ·𝑜 suc 𝑥) → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥)))
7370, 72syl9 77 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = suc 𝑦 → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥))))
7473com23 86 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ((𝐴 ·𝑜 𝐵) = suc 𝑦 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥))))
7574adantlrl 756 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ((𝐴 ·𝑜 𝐵) = suc 𝑦 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥))))
76 sucelon 7017 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On ↔ suc 𝑥 ∈ On)
77 omord 7648 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥)))
78 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) → 𝐵 ∈ suc 𝑥)
7977, 78syl6bir 244 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) → 𝐵 ∈ suc 𝑥))
8076, 79syl3an2b 1363 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ On ∧ 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) → 𝐵 ∈ suc 𝑥))
81803comr 1273 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) → 𝐵 ∈ suc 𝑥))
82813expb 1266 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) → 𝐵 ∈ suc 𝑥))
8382adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 suc 𝑥) → 𝐵 ∈ suc 𝑥))
8475, 83syl6d 75 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ((𝐴 ·𝑜 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥)))
8546, 84sylan 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑥𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ((𝐴 ·𝑜 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥)))
8685an32s 846 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ((𝐴 ·𝑜 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥)))
8786imp 445 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 ·𝑜 𝑥)) → ((𝐴 ·𝑜 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))
8841, 87mtod 189 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 ·𝑜 𝑥)) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦)
8988exp31 630 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝑥𝐵 → (𝑦 ∈ (𝐴 ·𝑜 𝑥) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦)))
9089rexlimdv 3030 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (∃𝑥𝐵 𝑦 ∈ (𝐴 ·𝑜 𝑥) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦))
9190adantr 481 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → (∃𝑥𝐵 𝑦 ∈ (𝐴 ·𝑜 𝑥) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦))
9230, 91mpd 15 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·𝑜 𝐵) = suc 𝑦) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦)
9392pm2.01da 458 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦)
9493adantr 481 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑦 ∈ On) → ¬ (𝐴 ·𝑜 𝐵) = suc 𝑦)
9594nrexdv 3001 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ∃𝑦 ∈ On (𝐴 ·𝑜 𝐵) = suc 𝑦)
96 ioran 511 . . 3 (¬ ((𝐴 ·𝑜 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·𝑜 𝐵) = suc 𝑦) ↔ (¬ (𝐴 ·𝑜 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 ·𝑜 𝐵) = suc 𝑦))
9720, 95, 96sylanbrc 698 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ((𝐴 ·𝑜 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·𝑜 𝐵) = suc 𝑦))
98 dflim3 7047 . 2 (Lim (𝐴 ·𝑜 𝐵) ↔ (Ord (𝐴 ·𝑜 𝐵) ∧ ¬ ((𝐴 ·𝑜 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·𝑜 𝐵) = suc 𝑦)))
996, 97, 98sylanbrc 698 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  odi  7659  omass  7660
  Copyright terms: Public domain W3C validator