| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr1.1 | ⊢ (𝜑 → 𝜒) |
| sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | anim1i 592 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 491 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: adantrll 758 adantrlr 759 sbthlem9 8078 pczpre 15552 cpmadugsumlemF 20681 blsscls2 22309 rpvmasumlem 25176 leopmuli 28992 chirredlem1 29249 chirredlem3 29251 dvconstbi 38533 bccbc 38544 reccot 42499 rectan 42500 aacllem 42547 |
| Copyright terms: Public domain | W3C validator |