| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr1.1 |
|
| sylanr1.2 |
|
| Ref | Expression |
|---|---|
| sylanr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 |
. . 3
| |
| 2 | 1 | anim1i 592 |
. 2
|
| 3 | sylanr1.2 |
. 2
| |
| 4 | 2, 3 | sylan2 491 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: adantrll 758 adantrlr 759 sbthlem9 8078 pczpre 15552 cpmadugsumlemF 20681 blsscls2 22309 rpvmasumlem 25176 leopmuli 28992 chirredlem1 29249 chirredlem3 29251 dvconstbi 38533 bccbc 38544 reccot 42499 rectan 42500 aacllem 42547 |
| Copyright terms: Public domain | W3C validator |