![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version Unicode version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr1.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylanr1.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylanr1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anim1i 592 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylanr1.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 491 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: adantrll 758 adantrlr 759 sbthlem9 8078 pczpre 15552 cpmadugsumlemF 20681 blsscls2 22309 rpvmasumlem 25176 leopmuli 28992 chirredlem1 29249 chirredlem3 29251 dvconstbi 38533 bccbc 38544 reccot 42499 rectan 42500 aacllem 42547 |
Copyright terms: Public domain | W3C validator |