MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blsscls2 Structured version   Visualization version   GIF version

Theorem blsscls2 22309
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blsscls2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
2 simplr3 1105 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 < 𝑇)
3 xmetcl 22136 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
433expa 1265 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
54adantlr 751 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
6 simplr1 1103 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
7 simplr2 1104 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑇 ∈ ℝ*)
8 xrlelttr 11987 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (((𝑃𝐷𝑧) ≤ 𝑅𝑅 < 𝑇) → (𝑃𝐷𝑧) < 𝑇))
98expcomd 454 . . . . . . 7 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
105, 6, 7, 9syl3anc 1326 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
112, 10mpd 15 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇))
12 simp2 1062 . . . . . . 7 ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) → 𝑇 ∈ ℝ*)
13 elbl2 22195 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑇 ∈ ℝ*) ∧ (𝑃𝑋𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1413an4s 869 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑇 ∈ ℝ*𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1512, 14sylanr1 684 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) ∧ 𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1615anassrs 680 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1711, 16sylibrd 249 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1817ralrimiva 2966 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
19 rabss 3679 . . 3 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
2018, 19sylibr 224 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇))
211, 20syl5eqss 3649 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  *cxr 10073   < clt 10074  cle 10075  ∞Metcxmt 19731  ballcbl 19733  MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  blcld  22310  blsscls  22312  ubthlem1  27726
  Copyright terms: Public domain W3C validator