Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Structured version   Visualization version   GIF version

Theorem dvconstbi 38533
Description: The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 23680 and dveq0 23763. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstbi.y (𝜑𝑌:𝑆⟶ℂ)
dvconstbi.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
dvconstbi (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Distinct variable groups:   𝑆,𝑐   𝑌,𝑐
Allowed substitution hint:   𝜑(𝑐)

Proof of Theorem dvconstbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstbi.y . . . . . . 7 (𝜑𝑌:𝑆⟶ℂ)
2 dvconstbi.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
3 elpri 4197 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
5 0re 10040 . . . . . . . . . 10 0 ∈ ℝ
6 eleq2 2690 . . . . . . . . . 10 (𝑆 = ℝ → (0 ∈ 𝑆 ↔ 0 ∈ ℝ))
75, 6mpbiri 248 . . . . . . . . 9 (𝑆 = ℝ → 0 ∈ 𝑆)
8 0cn 10032 . . . . . . . . . 10 0 ∈ ℂ
9 eleq2 2690 . . . . . . . . . 10 (𝑆 = ℂ → (0 ∈ 𝑆 ↔ 0 ∈ ℂ))
108, 9mpbiri 248 . . . . . . . . 9 (𝑆 = ℂ → 0 ∈ 𝑆)
117, 10jaoi 394 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈ 𝑆)
124, 11syl 17 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
13 ffvelrn 6357 . . . . . . 7 ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ)
141, 12, 13syl2anc 693 . . . . . 6 (𝜑 → (𝑌‘0) ∈ ℂ)
1514adantr 481 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ)
16 ffn 6045 . . . . . . . 8 (𝑌:𝑆⟶ℂ → 𝑌 Fn 𝑆)
171, 16syl 17 . . . . . . 7 (𝜑𝑌 Fn 𝑆)
1817adantr 481 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆)
19 fvex 6201 . . . . . . 7 (𝑌‘0) ∈ V
20 fnconstg 6093 . . . . . . 7 ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2119, 20mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2219fvconst2 6469 . . . . . . . 8 (𝑦𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
2322adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
24 eqid 2622 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
252, 24sblpnf 38509 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2612, 25mpdan 702 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2726eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦𝑆))
2827biimpar 502 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
2912, 26eleqtrrd 2704 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
302adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ})
31 ssid 3624 . . . . . . . . . . . . . . . . . . 19 𝑆𝑆
3231a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆𝑆)
331adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ)
3412adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆)
35 pnfxr 10092 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈ ℝ*)
37 eqid 2622 . . . . . . . . . . . . . . . . . 18 (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)
3826adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
39 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
4039adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆)
4138, 40eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌))
42 eqimss 3657 . . . . . . . . . . . . . . . . . . 19 ((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
445a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ ℝ)
4526eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥𝑆))
4645biimpa 501 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
47463adant2 1080 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
48 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥))
49 c0ex 10034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ V
5049fvconst2 6469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑆 → ((𝑆 × {0})‘𝑥) = 0)
5148, 50sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0)
5251, 8syl6eqel 2709 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ)
5352abscld 14175 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ)
5451abs00bd 14031 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0)
55 eqle 10139 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5653, 54, 55syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
57563adant1 1079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5847, 57syld3an3 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
59583expa 1265 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
6030, 24, 32, 33, 34, 36, 37, 43, 44, 59dvlip2 23758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6129, 60sylanr1 684 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
62613impdi 1381 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6328, 62syl3an3 1361 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
64633expa 1265 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
65643impdi 1381 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
66 recnprss 23668 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
672, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ ℂ)
6867sseld 3602 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
69 subcl 10280 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − 𝑦) ∈ ℂ)
7069abscld 14175 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ)
718, 70mpan 706 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) ∈ ℝ)
7268, 71syl6 35 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦𝑆 → (abs‘(0 − 𝑦)) ∈ ℝ))
7372imp 445 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℝ)
7473recnd 10068 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℂ)
7574mul02d 10234 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
76753adant2 1080 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
7765, 76breqtrd 4679 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0)
78 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝑌:𝑆⟶ℂ ∧ 𝑦𝑆) → (𝑌𝑦) ∈ ℂ)
7913, 78anim12dan 882 . . . . . . . . . . . . . . . . . 18 ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
801, 79sylan 488 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
81803impb 1260 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 ∈ 𝑆𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
8212, 81syl3an2 1360 . . . . . . . . . . . . . . 15 ((𝜑𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
83823anidm12 1383 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
84 subcl 10280 . . . . . . . . . . . . . 14 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8583, 84syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8685absge0d 14183 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
87863adant2 1080 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
8885abscld 14175 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ)
89 letri3 10123 . . . . . . . . . . . . 13 (((abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9088, 5, 89sylancl 694 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
91903adant2 1080 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9277, 87, 91mpbir2and 957 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) = 0)
9385abs00ad 14030 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
94933adant2 1080 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
9592, 94mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) = 0)
96 subeq0 10307 . . . . . . . . . . 11 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9783, 96syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
98973adant2 1080 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9995, 98mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
100993expa 1265 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
10123, 100eqtr2d 2657 . . . . . 6 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦))
10218, 21, 101eqfnfvd 6314 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)}))
103 sneq 4187 . . . . . . . 8 (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)})
104103xpeq2d 5139 . . . . . . 7 (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)}))
105104eqeq2d 2632 . . . . . 6 (𝑥 = (𝑌‘0) → (𝑌 = (𝑆 × {𝑥}) ↔ 𝑌 = (𝑆 × {(𝑌‘0)})))
106105rspcev 3309 . . . . 5 (((𝑌‘0) ∈ ℂ ∧ 𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
10715, 102, 106syl2anc 693 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
108107ex 450 . . 3 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
109 oveq2 6658 . . . . . 6 (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
1101093ad2ant3 1084 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
111 dvsconst 38529 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1122, 111sylan 488 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1131123adant3 1081 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
114110, 113eqtrd 2656 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0}))
115114rexlimdv3a 3033 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0})))
116108, 115impbid 202 . 2 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
117 sneq 4187 . . . . 5 (𝑐 = 𝑥 → {𝑐} = {𝑥})
118117xpeq2d 5139 . . . 4 (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥}))
119118eqeq2d 2632 . . 3 (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥})))
120119cbvrexv 3172 . 2 (∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
121116, 120syl6bbr 278 1 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  wss 3574  {csn 4177  {cpr 4179   class class class wbr 4653   × cxp 5112  dom cdm 5114  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  +∞cpnf 10071  *cxr 10073  cle 10075  cmin 10266  abscabs 13974  ballcbl 19733   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  expgrowth  38534
  Copyright terms: Public domain W3C validator