MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem9 Structured version   Visualization version   GIF version

Theorem sbthlem9 8078
Description: Lemma for sbth 8080. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem9 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem9
StepHypRef Expression
1 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
2 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
3 sbthlem.3 . . . . . . . 8 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
41, 2, 3sbthlem7 8076 . . . . . . 7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
51, 2, 3sbthlem5 8074 . . . . . . . 8 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
65adantrl 752 . . . . . . 7 ((dom 𝑓 = 𝐴 ∧ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
74, 6anim12i 590 . . . . . 6 (((Fun 𝑓 ∧ Fun 𝑔) ∧ (dom 𝑓 = 𝐴 ∧ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
87an42s 870 . . . . 5 (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
98adantlr 751 . . . 4 ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
109adantlr 751 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
111, 2, 3sbthlem8 8077 . . . 4 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
1211adantll 750 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
13 simpr 477 . . . . . . 7 ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) → dom 𝑔 = 𝐵)
1413anim1i 592 . . . . . 6 (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) → (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴))
15 df-rn 5125 . . . . . . 7 ran 𝐻 = dom 𝐻
161, 2, 3sbthlem6 8075 . . . . . . 7 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
1715, 16syl5eqr 2670 . . . . . 6 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
1814, 17sylanr1 684 . . . . 5 ((ran 𝑓𝐵 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
1918adantll 750 . . . 4 ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
2019adantlr 751 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
2110, 12, 20jca32 558 . 2 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
22 df-f1 5893 . . . 4 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
23 df-f 5892 . . . . . 6 (𝑓:𝐴𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
24 df-fn 5891 . . . . . . 7 (𝑓 Fn 𝐴 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
2524anbi1i 731 . . . . . 6 ((𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) ↔ ((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵))
2623, 25bitri 264 . . . . 5 (𝑓:𝐴𝐵 ↔ ((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵))
2726anbi1i 731 . . . 4 ((𝑓:𝐴𝐵 ∧ Fun 𝑓) ↔ (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓))
2822, 27bitri 264 . . 3 (𝑓:𝐴1-1𝐵 ↔ (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓))
29 df-f1 5893 . . . 4 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
30 df-f 5892 . . . . . 6 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
31 df-fn 5891 . . . . . . 7 (𝑔 Fn 𝐵 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3231anbi1i 731 . . . . . 6 ((𝑔 Fn 𝐵 ∧ ran 𝑔𝐴) ↔ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3330, 32bitri 264 . . . . 5 (𝑔:𝐵𝐴 ↔ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3433anbi1i 731 . . . 4 ((𝑔:𝐵𝐴 ∧ Fun 𝑔) ↔ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔))
3529, 34bitri 264 . . 3 (𝑔:𝐵1-1𝐴 ↔ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔))
3628, 35anbi12i 733 . 2 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)))
37 dff1o4 6145 . . 3 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻 Fn 𝐴𝐻 Fn 𝐵))
38 df-fn 5891 . . . 4 (𝐻 Fn 𝐴 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
39 df-fn 5891 . . . 4 (𝐻 Fn 𝐵 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐵))
4038, 39anbi12i 733 . . 3 ((𝐻 Fn 𝐴𝐻 Fn 𝐵) ↔ ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
4137, 40bitri 264 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
4221, 36, 413imtr4i 281 1 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  cdif 3571  cun 3572  wss 3574   cuni 4436  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  sbthlem10  8079
  Copyright terms: Public domain W3C validator