MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis Structured version   Visualization version   GIF version

Theorem tfis 7054
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
tfis.1 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
Assertion
Ref Expression
tfis (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfis
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfcv 2764 . . . . . . 7 𝑥𝑧
3 nfrab1 3122 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝜑}
42, 3nfss 3596 . . . . . . . 8 𝑥 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}
53nfcri 2758 . . . . . . . 8 𝑥 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}
64, 5nfim 1825 . . . . . . 7 𝑥(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
7 dfss3 3592 . . . . . . . . 9 (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
8 sseq1 3626 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
97, 8syl5bbr 274 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
10 rabid 3116 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
11 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
1210, 11syl5bbr 274 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ On ∧ 𝜑) ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
139, 12imbi12d 334 . . . . . . 7 (𝑥 = 𝑧 → ((∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)) ↔ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})))
14 sbequ 2376 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 nfcv 2764 . . . . . . . . . . . . 13 𝑥On
16 nfcv 2764 . . . . . . . . . . . . 13 𝑤On
17 nfv 1843 . . . . . . . . . . . . 13 𝑤𝜑
18 nfs1v 2437 . . . . . . . . . . . . 13 𝑥[𝑤 / 𝑥]𝜑
19 sbequ12 2111 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
2015, 16, 17, 18, 19cbvrab 3198 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ 𝜑} = {𝑤 ∈ On ∣ [𝑤 / 𝑥]𝜑}
2114, 20elrab2 3366 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑))
2221simprbi 480 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑)
2322ralimi 2952 . . . . . . . . 9 (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑥 [𝑦 / 𝑥]𝜑)
24 tfis.1 . . . . . . . . 9 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
2523, 24syl5 34 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜑))
2625anc2li 580 . . . . . . 7 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)))
272, 6, 13, 26vtoclgaf 3271 . . . . . 6 (𝑧 ∈ On → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
2827rgen 2922 . . . . 5 𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
29 tfi 7053 . . . . 5 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On)
301, 28, 29mp2an 708 . . . 4 {𝑥 ∈ On ∣ 𝜑} = On
3130eqcomi 2631 . . 3 On = {𝑥 ∈ On ∣ 𝜑}
3231rabeq2i 3197 . 2 (𝑥 ∈ On ↔ (𝑥 ∈ On ∧ 𝜑))
3332simprbi 480 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  [wsb 1880  wcel 1990  wral 2912  {crab 2916  wss 3574  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  tfis2f  7055
  Copyright terms: Public domain W3C validator