| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfis | Structured version Visualization version Unicode version | ||
| Description: Transfinite Induction
Schema. If all ordinal numbers less than a given
number |
| Ref | Expression |
|---|---|
| tfis.1 |
|
| Ref | Expression |
|---|---|
| tfis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3687 |
. . . . 5
| |
| 2 | nfcv 2764 |
. . . . . . 7
| |
| 3 | nfrab1 3122 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nfss 3596 |
. . . . . . . 8
|
| 5 | 3 | nfcri 2758 |
. . . . . . . 8
|
| 6 | 4, 5 | nfim 1825 |
. . . . . . 7
|
| 7 | dfss3 3592 |
. . . . . . . . 9
| |
| 8 | sseq1 3626 |
. . . . . . . . 9
| |
| 9 | 7, 8 | syl5bbr 274 |
. . . . . . . 8
|
| 10 | rabid 3116 |
. . . . . . . . 9
| |
| 11 | eleq1 2689 |
. . . . . . . . 9
| |
| 12 | 10, 11 | syl5bbr 274 |
. . . . . . . 8
|
| 13 | 9, 12 | imbi12d 334 |
. . . . . . 7
|
| 14 | sbequ 2376 |
. . . . . . . . . . . 12
| |
| 15 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 16 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 17 | nfv 1843 |
. . . . . . . . . . . . 13
| |
| 18 | nfs1v 2437 |
. . . . . . . . . . . . 13
| |
| 19 | sbequ12 2111 |
. . . . . . . . . . . . 13
| |
| 20 | 15, 16, 17, 18, 19 | cbvrab 3198 |
. . . . . . . . . . . 12
|
| 21 | 14, 20 | elrab2 3366 |
. . . . . . . . . . 11
|
| 22 | 21 | simprbi 480 |
. . . . . . . . . 10
|
| 23 | 22 | ralimi 2952 |
. . . . . . . . 9
|
| 24 | tfis.1 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl5 34 |
. . . . . . . 8
|
| 26 | 25 | anc2li 580 |
. . . . . . 7
|
| 27 | 2, 6, 13, 26 | vtoclgaf 3271 |
. . . . . 6
|
| 28 | 27 | rgen 2922 |
. . . . 5
|
| 29 | tfi 7053 |
. . . . 5
| |
| 30 | 1, 28, 29 | mp2an 708 |
. . . 4
|
| 31 | 30 | eqcomi 2631 |
. . 3
|
| 32 | 31 | rabeq2i 3197 |
. 2
|
| 33 | 32 | simprbi 480 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
| This theorem is referenced by: tfis2f 7055 |
| Copyright terms: Public domain | W3C validator |