MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 22443
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m = (-g𝐺)
tngval.d 𝐷 = (𝑁 )
tngval.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngval ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3212 . . 3 (𝐺𝑉𝐺 ∈ V)
3 elex 3212 . . 3 (𝑁𝑊𝑁 ∈ V)
4 simpl 473 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑔 = 𝐺)
5 simpr 477 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑓 = 𝑁)
64fveq2d 6195 . . . . . . . . . 10 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = (-g𝐺))
7 tngval.m . . . . . . . . . 10 = (-g𝐺)
86, 7syl6eqr 2674 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = )
95, 8coeq12d 5286 . . . . . . . 8 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = (𝑁 ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 )
119, 10syl6eqr 2674 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = 𝐷)
1211opeq2d 4409 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩ = ⟨(dist‘ndx), 𝐷⟩)
134, 12oveq12d 6668 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) = (𝐺 sSet ⟨(dist‘ndx), 𝐷⟩))
1411fveq2d 6195 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = (MetOpen‘𝐷))
15 tngval.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1614, 15syl6eqr 2674 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = 𝐽)
1716opeq2d 4409 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
1813, 17oveq12d 6668 . . . 4 ((𝑔 = 𝐺𝑓 = 𝑁) → ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
19 df-tng 22389 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
20 ovex 6678 . . . 4 ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpt2a 6791 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
222, 3, 21syl2an 494 . 2 ((𝐺𝑉𝑁𝑊) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
231, 22syl5eq 2668 1 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  ccom 5118  cfv 5888  (class class class)co 6650  ndxcnx 15854   sSet csts 15855  TopSetcts 15947  distcds 15950  -gcsg 17424  MetOpencmopn 19736   toNrmGrp ctng 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-tng 22389
This theorem is referenced by:  tnglem  22444  tngds  22452  tngtset  22453
  Copyright terms: Public domain W3C validator