MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglem Structured version   Visualization version   GIF version

Theorem tnglem 22444
Description: Lemma for tngbas 22445 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglem.2 𝐸 = Slot 𝐾
tnglem.3 𝐾 ∈ ℕ
tnglem.4 𝐾 < 9
Assertion
Ref Expression
tnglem (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglem
StepHypRef Expression
1 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 eqid 2622 . . . . 5 (-g𝐺) = (-g𝐺)
3 eqid 2622 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
4 eqid 2622 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
51, 2, 3, 4tngval 22443 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
65fveq2d 6195 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
7 tnglem.2 . . . . . 6 𝐸 = Slot 𝐾
8 tnglem.3 . . . . . 6 𝐾 ∈ ℕ
97, 8ndxid 15883 . . . . 5 𝐸 = Slot (𝐸‘ndx)
107, 8ndxarg 15882 . . . . . . . 8 (𝐸‘ndx) = 𝐾
118nnrei 11029 . . . . . . . 8 𝐾 ∈ ℝ
1210, 11eqeltri 2697 . . . . . . 7 (𝐸‘ndx) ∈ ℝ
13 tnglem.4 . . . . . . . . 9 𝐾 < 9
1410, 13eqbrtri 4674 . . . . . . . 8 (𝐸‘ndx) < 9
15 1nn 11031 . . . . . . . . 9 1 ∈ ℕ
16 2nn0 11309 . . . . . . . . 9 2 ∈ ℕ0
17 9nn0 11316 . . . . . . . . 9 9 ∈ ℕ0
18 9lt10 11673 . . . . . . . . 9 9 < 10
1915, 16, 17, 18declti 11546 . . . . . . . 8 9 < 12
20 9re 11107 . . . . . . . . 9 9 ∈ ℝ
21 1nn0 11308 . . . . . . . . . . 11 1 ∈ ℕ0
2221, 16deccl 11512 . . . . . . . . . 10 12 ∈ ℕ0
2322nn0rei 11303 . . . . . . . . 9 12 ∈ ℝ
2412, 20, 23lttri 10163 . . . . . . . 8 (((𝐸‘ndx) < 9 ∧ 9 < 12) → (𝐸‘ndx) < 12)
2514, 19, 24mp2an 708 . . . . . . 7 (𝐸‘ndx) < 12
2612, 25ltneii 10150 . . . . . 6 (𝐸‘ndx) ≠ 12
27 dsndx 16062 . . . . . 6 (dist‘ndx) = 12
2826, 27neeqtrri 2867 . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
299, 28setsnid 15915 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
3012, 14ltneii 10150 . . . . . 6 (𝐸‘ndx) ≠ 9
31 tsetndx 16040 . . . . . 6 (TopSet‘ndx) = 9
3230, 31neeqtrri 2867 . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
339, 32setsnid 15915 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
3429, 33eqtri 2644 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
356, 34syl6reqr 2675 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
367str0 15911 . . 3 ∅ = (𝐸‘∅)
37 fvprc 6185 . . . 4 𝐺 ∈ V → (𝐸𝐺) = ∅)
3837adantr 481 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = ∅)
39 reldmtng 22442 . . . . . . 7 Rel dom toNrmGrp
4039ovprc1 6684 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
4140adantr 481 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐺 toNrmGrp 𝑁) = ∅)
421, 41syl5eq 2668 . . . 4 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ∅)
4342fveq2d 6195 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘∅))
4436, 38, 433eqtr4a 2682 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
4535, 44pm2.61ian 831 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cop 4183   class class class wbr 4653  ccom 5118  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   < clt 10074  cn 11020  2c2 11070  9c9 11077  cdc 11493  ndxcnx 15854   sSet csts 15855  Slot cslot 15856  TopSetcts 15947  distcds 15950  -gcsg 17424  MetOpencmopn 19736   toNrmGrp ctng 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-tset 15960  df-ds 15964  df-tng 22389
This theorem is referenced by:  tngbas  22445  tngplusg  22446  tngmulr  22448  tngsca  22449  tngvsca  22450  tngip  22451
  Copyright terms: Public domain W3C validator