![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version |
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
Ref | Expression |
---|---|
topfne.1 | ⊢ 𝑋 = ∪ 𝐽 |
topfne.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
topfne | ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 20777 | . . . 4 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
2 | 1 | sseq2d 3633 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽 ⊆ 𝐾)) |
3 | 2 | bicomd 213 | . 2 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ 𝐾 ↔ 𝐽 ⊆ (topGen‘𝐾))) |
4 | topfne.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
5 | topfne.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | isfne4 32335 | . . 3 ⊢ (𝐽Fne𝐾 ↔ (𝑋 = 𝑌 ∧ 𝐽 ⊆ (topGen‘𝐾))) |
7 | 6 | baibr 945 | . 2 ⊢ (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾)) |
8 | 3, 7 | sylan9bb 736 | 1 ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 topGenctg 16098 Topctop 20698 Fnecfne 32331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-fne 32332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |