| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version Unicode version | ||
| Description: The class of all
topologies is a proper class. The proof uses
discrete topologies and pwnex 6968; an alternate proof uses indiscrete
topologies (see indistop 20806) and the analogue of pwnex 6968 with pairs
|
| Ref | Expression |
|---|---|
| topnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex 6968 |
. . . 4
| |
| 2 | 1 | neli 2899 |
. . 3
|
| 3 | vex 3203 |
. . . . . . . 8
| |
| 4 | distop 20799 |
. . . . . . . 8
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . 7
|
| 6 | eleq1 2689 |
. . . . . . 7
| |
| 7 | 5, 6 | mpbiri 248 |
. . . . . 6
|
| 8 | 7 | exlimiv 1858 |
. . . . 5
|
| 9 | 8 | abssi 3677 |
. . . 4
|
| 10 | ssexg 4804 |
. . . 4
| |
| 11 | 9, 10 | mpan 706 |
. . 3
|
| 12 | 2, 11 | mto 188 |
. 2
|
| 13 | 12 | nelir 2900 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-iun 4522 df-top 20699 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |