MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   Unicode version

Theorem topnex 20800
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 6968; an alternate proof uses indiscrete topologies (see indistop 20806) and the analogue of pwnex 6968 with pairs  { (/) ,  x } instead of power sets  ~P x (that analogue is also a consequence of abnex 6965). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 6968 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2899 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 3203 . . . . . . . 8  |-  x  e. 
_V
4 distop 20799 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2689 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 248 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1858 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3677 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4804 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 706 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 188 . 2  |-  -.  Top  e.  _V
1312nelir 2900 1  |-  Top  e/  _V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    e/ wnel 2897   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-iun 4522  df-top 20699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator