MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotr Structured version   Visualization version   GIF version

Theorem trclfvcotr 13750
Description: The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.)
Assertion
Ref Expression
trclfvcotr (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))

Proof of Theorem trclfvcotr
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 5508 . . . . . . . . . 10 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
2 sp 2053 . . . . . . . . . . 11 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ∀𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
3219.21bbi 2060 . . . . . . . . . 10 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
41, 3sylbi 207 . . . . . . . . 9 ((𝑟𝑟) ⊆ 𝑟 → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
54adantl 482 . . . . . . . 8 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
65a2i 14 . . . . . . 7 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
76alimi 1739 . . . . . 6 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
87ax-gen 1722 . . . . 5 𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
98ax-gen 1722 . . . 4 𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
109ax-gen 1722 . . 3 𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
11 brtrclfv 13743 . . . . . . . 8 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑏 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏)))
12 brtrclfv 13743 . . . . . . . 8 (𝑅𝑉 → (𝑏(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1311, 12anbi12d 747 . . . . . . 7 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))))
14 jcab 907 . . . . . . . . 9 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1514albii 1747 . . . . . . . 8 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ ∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
16 19.26 1798 . . . . . . . 8 (∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1715, 16bitri 264 . . . . . . 7 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1813, 17syl6bbr 278 . . . . . 6 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐))))
19 brtrclfv 13743 . . . . . 6 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))
2018, 19imbi12d 334 . . . . 5 (𝑅𝑉 → (((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2120albidv 1849 . . . 4 (𝑅𝑉 → (∀𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
22212albidv 1851 . . 3 (𝑅𝑉 → (∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2310, 22mpbiri 248 . 2 (𝑅𝑉 → ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
24 cotr 5508 . 2 (((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) ↔ ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
2523, 24sylibr 224 1 (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481  wcel 1990  wss 3574   class class class wbr 4653  ccom 5118  cfv 5888  t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by:  trclfvlb2  13751  trclidm  13754  trclfvcotrg  13757
  Copyright terms: Public domain W3C validator