| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trrelssd | Structured version Visualization version GIF version | ||
| Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| trrelssd.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| trrelssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑅) |
| trrelssd.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑅) |
| Ref | Expression |
|---|---|
| trrelssd | ⊢ (𝜑 → (𝑆 ∘ 𝑇) ⊆ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trrelssd.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑅) | |
| 2 | trrelssd.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑅) | |
| 3 | 1, 2 | coss12d 13711 | . 2 ⊢ (𝜑 → (𝑆 ∘ 𝑇) ⊆ (𝑅 ∘ 𝑅)) |
| 4 | trrelssd.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
| 5 | 3, 4 | sstrd 3613 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑇) ⊆ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3574 ∘ ccom 5118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-co 5123 |
| This theorem is referenced by: trclfvlb2 13751 trrelind 37957 iunrelexpmin1 38000 iunrelexpmin2 38004 |
| Copyright terms: Public domain | W3C validator |