MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trrelssd Structured version   Visualization version   GIF version

Theorem trrelssd 13712
Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
trrelssd.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
trrelssd.s (𝜑𝑆𝑅)
trrelssd.t (𝜑𝑇𝑅)
Assertion
Ref Expression
trrelssd (𝜑 → (𝑆𝑇) ⊆ 𝑅)

Proof of Theorem trrelssd
StepHypRef Expression
1 trrelssd.s . . 3 (𝜑𝑆𝑅)
2 trrelssd.t . . 3 (𝜑𝑇𝑅)
31, 2coss12d 13711 . 2 (𝜑 → (𝑆𝑇) ⊆ (𝑅𝑅))
4 trrelssd.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
53, 4sstrd 3613 1 (𝜑 → (𝑆𝑇) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3574  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713  df-co 5123
This theorem is referenced by:  trclfvlb2  13751  trrelind  37957  iunrelexpmin1  38000  iunrelexpmin2  38004
  Copyright terms: Public domain W3C validator