| Step | Hyp | Ref
| Expression |
| 1 | | iunrelexpmin1.def |
. . . . 5
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛))) |
| 3 | | simplr 792 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ) |
| 4 | | simpr 477 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 5 | 4 | oveq1d 6665 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) ∧ 𝑟 = 𝑅) → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) |
| 6 | 3, 5 | iuneq12d 4546 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) ∧ 𝑟 = 𝑅) → ∪
𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 7 | | elex 3212 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 8 | 7 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → 𝑅 ∈ V) |
| 9 | | nnex 11026 |
. . . . . 6
⊢ ℕ
∈ V |
| 10 | | ovex 6678 |
. . . . . 6
⊢ (𝑅↑𝑟𝑛) ∈ V |
| 11 | 9, 10 | iunex 7147 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
| 12 | 11 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V) |
| 13 | 2, 6, 8, 12 | fvmptd 6288 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → (𝐶‘𝑅) = ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 14 | | relexp1g 13766 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| 15 | 14 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) ⊆ 𝑠 ↔ 𝑅 ⊆ 𝑠)) |
| 16 | 15 | anbi1d 741 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) ↔ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
| 17 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟1)) |
| 18 | 17 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟1) ⊆ 𝑠)) |
| 19 | 18 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠))) |
| 20 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑦)) |
| 21 | 20 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑦) ⊆ 𝑠)) |
| 22 | 21 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠))) |
| 23 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟𝑥) = (𝑅↑𝑟(𝑦 + 1))) |
| 24 | 23 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠)) |
| 25 | 24 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + 1) → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
| 26 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑛)) |
| 27 | 26 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 28 | 27 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
| 29 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠) |
| 30 | | simp1 1061 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ) |
| 31 | | 1nn 11031 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ |
| 32 | 31 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ) |
| 33 | | simp2l 1087 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑅 ∈ 𝑉) |
| 34 | | relexpaddnn 13791 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 1 ∈
ℕ ∧ 𝑅 ∈
𝑉) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
| 35 | 30, 32, 33, 34 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
| 36 | | simp2rr 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑠 ∘ 𝑠) ⊆ 𝑠) |
| 37 | | simp3 1063 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟𝑦) ⊆ 𝑠) |
| 38 | | simp2rl 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟1) ⊆ 𝑠) |
| 39 | 36, 37, 38 | trrelssd 13712 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) ⊆ 𝑠) |
| 40 | 35, 39 | eqsstr3d 3640 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠) |
| 41 | 40 | 3exp 1264 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ((𝑅↑𝑟𝑦) ⊆ 𝑠 → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
| 42 | 41 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
| 43 | 19, 22, 25, 28, 29, 42 | nnind 11038 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 44 | 43 | com12 32 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 45 | 44 | ralrimiv 2965 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠) |
| 46 | | iunss 4561 |
. . . . . . . 8
⊢ (∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠) |
| 47 | 45, 46 | sylibr 224 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠) |
| 48 | 47 | ex 450 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 49 | 16, 48 | sylbird 250 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 50 | 49 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 51 | | sseq1 3626 |
. . . . 5
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) → ((𝐶‘𝑅) ⊆ 𝑠 ↔ ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
| 52 | 51 | imbi2d 330 |
. . . 4
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) → (((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠) ↔ ((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
| 53 | 50, 52 | syl5ibr 236 |
. . 3
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) → ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠))) |
| 54 | 13, 53 | mpcom 38 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |
| 55 | 54 | alrimiv 1855 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∀𝑠((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |