Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin2 Structured version   Visualization version   GIF version

Theorem iunrelexpmin2 38004
Description: The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin2 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin2.def . . . . 5 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
21a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛)))
3 simplr 792 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0)
4 simpr 477 . . . . . 6 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
54oveq1d 6665 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
63, 5iuneq12d 4546 . . . 4 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
7 elex 3212 . . . . 5 (𝑅𝑉𝑅 ∈ V)
87adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑅 ∈ V)
9 nn0ex 11298 . . . . . 6 0 ∈ V
10 ovex 6678 . . . . . 6 (𝑅𝑟𝑛) ∈ V
119, 10iunex 7147 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1211a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
132, 6, 8, 12fvmptd 6288 . . 3 ((𝑅𝑉𝑁 = ℕ0) → (𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
14 relexp0g 13762 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1514sseq1d 3632 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
16 relexp1g 13766 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1716sseq1d 3632 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1815, 173anbi12d 1400 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
19 elnn0 11294 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
20 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
2120sseq1d 3632 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
2221imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
23 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2423sseq1d 3632 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2524imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
26 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2726sseq1d 3632 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2827imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
29 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
3029sseq1d 3632 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3130imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
32 simpr2 1068 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
33 simp1 1061 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
34 1nn 11031 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
36 simp2l 1087 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
37 relexpaddnn 13791 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3833, 35, 36, 37syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
39 simp2r3 1165 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
40 simp3 1063 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
41 simp2r2 1164 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
4239, 40, 41trrelssd 13712 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
4338, 42eqsstr3d 3640 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
44433exp 1264 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4544a2d 29 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4622, 25, 28, 31, 32, 45nnind 11038 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
47 simpr1 1067 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟0) ⊆ 𝑠)
48 oveq2 6658 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
4948sseq1d 3632 . . . . . . . . . . . . 13 (𝑛 = 0 → ((𝑅𝑟𝑛) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
5047, 49syl5ibr 236 . . . . . . . . . . . 12 (𝑛 = 0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5146, 50jaoi 394 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5219, 51sylbi 207 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5352com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
5453ralrimiv 2965 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
55 iunss 4561 . . . . . . . 8 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5654, 55sylibr 224 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5756ex 450 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5818, 57sylbird 250 . . . . 5 (𝑅𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5958adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
60 sseq1 3626 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
6160imbi2d 330 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
6259, 61syl5ibr 236 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
6313, 62mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
6463alrimiv 1855 1 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574   ciun 4520  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  0cn0 11292  𝑟crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  dfrtrcl3  38025
  Copyright terms: Public domain W3C validator