![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version |
Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
Ref | Expression |
---|---|
ucnimalem | ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
2 | vex 3203 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3203 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1std 7178 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (1st ‘𝑝) = 𝑥) |
5 | 4 | fveq2d 6195 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑝)) = (𝐹‘𝑥)) |
6 | 2, 3 | op2ndd 7179 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (2nd ‘𝑝) = 𝑦) |
7 | 6 | fveq2d 6195 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑝)) = (𝐹‘𝑦)) |
8 | 5, 7 | opeq12d 4410 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
9 | 8 | mpt2mpt 6752 | . 2 ⊢ (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
10 | 1, 9 | eqtr4i 2647 | 1 ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 〈cop 4183 ↦ cmpt 4729 × cxp 5112 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1st c1st 7166 2nd c2nd 7167 UnifOncust 22003 Cnucucn 22079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
This theorem is referenced by: ucnima 22085 |
Copyright terms: Public domain | W3C validator |