| Step | Hyp | Ref
| Expression |
| 1 | | ucnprima.4 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| 2 | | ucnprima.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
| 3 | | ucnprima.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
| 4 | | ucnprima.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
| 5 | | isucn 22082 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))))) |
| 7 | 2, 6 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)))) |
| 8 | 7 | simprd 479 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦))) |
| 9 | | breq 4655 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝐹‘𝑥)𝑤(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
| 10 | 9 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 11 | 10 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 12 | 11 | rexralbidv 3058 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 13 | 12 | rspcv 3305 |
. . . . 5
⊢ (𝑊 ∈ 𝑉 → (∀𝑤 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑤(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 14 | 1, 8, 13 | sylc 65 |
. . . 4
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
| 15 | | simplll 798 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝜑) |
| 16 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
| 17 | 15, 16 | jca 554 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → (𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 18 | | ustssxp 22008 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
| 19 | 3, 18 | sylan 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ (𝑋 × 𝑋)) |
| 20 | 19 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
| 21 | 20 | adantlr 751 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ (𝑋 × 𝑋)) |
| 22 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → 𝑝 ∈ 𝑟) |
| 23 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
| 24 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → 𝑝 ∈ (𝑋 × 𝑋)) |
| 25 | | elxp2 5132 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝑋 × 𝑋) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
| 26 | 24, 25 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉) |
| 27 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
| 28 | 27 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
| 29 | 28 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟)) |
| 30 | | df-br 4654 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑟𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟) |
| 31 | 29, 30 | syl6bbr 278 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑝 ∈ 𝑟 ↔ 𝑥𝑟𝑦)) |
| 32 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 ∈ (𝑋 × 𝑋)) |
| 33 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈
V |
| 34 | | ucnprima.5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 35 | 3, 4, 2, 1, 34 | ucnimalem 22084 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| 36 | 35 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝑋 × 𝑋) ∧ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 ∈ V) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| 37 | 32, 33, 36 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| 38 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈𝑥, 𝑦〉) |
| 39 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ (𝑋 × 𝑋) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 40 | 32, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 41 | 38, 40 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈𝑥, 𝑦〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 42 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑥 ∈ V |
| 43 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑦 ∈ V |
| 44 | 42, 43 | opth 4945 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑥, 𝑦〉 = 〈(1st
‘𝑝), (2nd
‘𝑝)〉 ↔
(𝑥 = (1st
‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
| 45 | 41, 44 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝑥 = (1st ‘𝑝) ∧ 𝑦 = (2nd ‘𝑝))) |
| 46 | 45 | simpld 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑥 = (1st ‘𝑝)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑥) = (𝐹‘(1st ‘𝑝))) |
| 48 | 45 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 𝑦 = (2nd ‘𝑝)) |
| 49 | 48 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐹‘𝑦) = (𝐹‘(2nd ‘𝑝))) |
| 50 | 47, 49 | opeq12d 4410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 = 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| 51 | 37, 50 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → (𝐺‘𝑝) = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 52 | 51 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊)) |
| 53 | | df-br 4654 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥)𝑊(𝐹‘𝑦) ↔ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ 𝑊) |
| 54 | 52, 53 | syl6bbr 278 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑝) ∈ 𝑊 ↔ (𝐹‘𝑥)𝑊(𝐹‘𝑦))) |
| 55 | 31, 54 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = 〈𝑥, 𝑦〉) → ((𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)))) |
| 56 | 55 | exbiri 652 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 = 〈𝑥, 𝑦〉 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
| 57 | 56 | reximdv 3016 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
| 58 | 57 | reximdv 3016 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
| 59 | 26, 58 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
| 60 | 59 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) |
| 61 | 23, 60 | r19.29d2r 3080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)))) |
| 62 | | pm3.35 611 |
. . . . . . . . . . . 12
⊢ (((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
| 63 | 62 | rexlimivw 3029 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
| 64 | 63 | rexlimivw 3029 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊))) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
| 65 | 61, 64 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 ∈ 𝑟 → (𝐺‘𝑝) ∈ 𝑊)) |
| 66 | 65 | imp 445 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
| 67 | 17, 21, 22, 66 | syl21anc 1325 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) ∧ 𝑝 ∈ 𝑟) → (𝐺‘𝑝) ∈ 𝑊) |
| 68 | 67 | ralrimiva 2966 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦))) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
| 69 | 68 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
| 70 | 69 | reximdva 3017 |
. . . 4
⊢ (𝜑 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑊(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
| 71 | 14, 70 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊) |
| 72 | 34 | mpt2fun 6762 |
. . . . . 6
⊢ Fun 𝐺 |
| 73 | | opex 4932 |
. . . . . . . 8
⊢
〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V |
| 74 | 34, 73 | dmmpt2 7240 |
. . . . . . 7
⊢ dom 𝐺 = (𝑋 × 𝑋) |
| 75 | 19, 74 | syl6sseqr 3652 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → 𝑟 ⊆ dom 𝐺) |
| 76 | | funimass4 6247 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝑟 ⊆ dom 𝐺) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
| 77 | 72, 75, 76 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → ((𝐺 “ 𝑟) ⊆ 𝑊 ↔ ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊)) |
| 78 | 77 | biimprd 238 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑈) → (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
| 79 | 78 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) |
| 80 | | r19.29r 3073 |
. . 3
⊢
((∃𝑟 ∈
𝑈 ∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ ∀𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
| 81 | 71, 79, 80 | syl2anc 693 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊))) |
| 82 | | pm3.35 611 |
. . 3
⊢
((∀𝑝 ∈
𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → (𝐺 “ 𝑟) ⊆ 𝑊) |
| 83 | 82 | reximi 3011 |
. 2
⊢
(∃𝑟 ∈
𝑈 (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 ∧ (∀𝑝 ∈ 𝑟 (𝐺‘𝑝) ∈ 𝑊 → (𝐺 “ 𝑟) ⊆ 𝑊)) → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |
| 84 | 81, 83 | syl 17 |
1
⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) |