![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0vb | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0vb | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2622 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 25957 | . . 3 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | pweq 4161 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅) | |
5 | 4 | difeq1d 3727 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅})) |
6 | pw0 4343 | . . . . . . . . 9 ⊢ 𝒫 ∅ = {∅} | |
7 | 6 | difeq1i 3724 | . . . . . . . 8 ⊢ (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅}) |
8 | difid 3948 | . . . . . . . 8 ⊢ ({∅} ∖ {∅}) = ∅ | |
9 | 7, 8 | eqtri 2644 | . . . . . . 7 ⊢ (𝒫 ∅ ∖ {∅}) = ∅ |
10 | 5, 9 | syl6eq 2672 | . . . . . 6 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
12 | 11 | feq3d 6032 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)) |
13 | f00 6087 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅)) | |
14 | 13 | simplbi 476 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅) |
15 | 12, 14 | syl6bi 243 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅)) |
16 | 3, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
17 | simpl 473 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
18 | simpr 477 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
19 | 17, 18 | uhgr0e 25966 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph ) |
20 | 19 | ex 450 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph )) |
21 | 20 | adantr 481 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph )) |
22 | 16, 21 | impbid 202 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ∅c0 3915 𝒫 cpw 4158 {csn 4177 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 UHGraph cuhgr 25951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-uhgr 25953 |
This theorem is referenced by: usgr0vb 26129 uhgr0v0e 26130 0uhgrsubgr 26171 finsumvtxdg2size 26446 0uhgrrusgr 26474 frgr0v 27125 frgruhgr0v 27127 |
Copyright terms: Public domain | W3C validator |